These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 6130087)
1. Glutamic acid is an active site residue of angiotensin I-converting enzyme. Use of the Lossen rearrangement for identification of dicarboxylic acid residues. Harris RB; Wilson IB J Biol Chem; 1983 Jan; 258(2):1357-62. PubMed ID: 6130087 [TBL] [Abstract][Full Text] [Related]
2. Sequencing of an active-site peptide of angiotensin I-converting enzyme containing an essential glutamic acid residue. Harris RB; Wilson IB J Biol Chem; 1985 Feb; 260(4):2208-11. PubMed ID: 2857712 [TBL] [Abstract][Full Text] [Related]
3. Isolation and sequencing of an active-site peptide from angiotensin I-converting enzyme. Harris RB Adv Exp Med Biol; 1986; 198 Pt A():513-21. PubMed ID: 3028071 [TBL] [Abstract][Full Text] [Related]
4. Irreversible inhibition of bovine lung angiotensin I-converting enzyme with p-[N,N-bis(chloroethyl)amino]phenylbutyric acid (chlorambucil) and chlorambucyl L-proline and with evidence that an active site carboxyl group is labeled. Harris RB; Wilson IB J Biol Chem; 1982 Jan; 257(2):811-5. PubMed ID: 6274865 [TBL] [Abstract][Full Text] [Related]
5. Identification of essential tyrosine and lysine residues in angiotensin converting enzyme: evidence for a single active site. Chen YN; Riordan JF Biochemistry; 1990 Nov; 29(46):10493-8. PubMed ID: 2176870 [TBL] [Abstract][Full Text] [Related]
6. Hybridization and partial cDNA sequence analyses of bovine lung angiotensin I-converting enzyme. Deluca-Flaherty C; Schullek JR; Wilson IB; Harris RB Int J Pept Protein Res; 1987 Jun; 29(6):678-84. PubMed ID: 2887536 [TBL] [Abstract][Full Text] [Related]
7. Sweet potato beta-amylase. Primary structure and identification of the active-site glutamyl residue. Toda H; Nitta Y; Asanami S; Kim JP; Sakiyama F Eur J Biochem; 1993 Aug; 216(1):25-38. PubMed ID: 8103452 [TBL] [Abstract][Full Text] [Related]
8. Physicochemical characteristics of homogeneous bovine lung angiotensin I-converting enzyme. Comparison with human serum enzyme. Harris RB; Wilson IB Int J Pept Protein Res; 1982 Aug; 20(2):167-76. PubMed ID: 6288600 [TBL] [Abstract][Full Text] [Related]
9. Specific degradation of pectins via a carbodiimide-mediated Lossen rearrangement of methyl esterified galacturonic acid residues. Needs PW; Rigby NM; Ring SG; MacDougall AJ Carbohydr Res; 2001 Jun; 333(1):47-58. PubMed ID: 11423110 [TBL] [Abstract][Full Text] [Related]
10. Affinity labeling of bovine carboxypeptidase A Leu by N-bromoacetyl-N-methyl-L-phenylalanine. II. Sites of modification. Hass GM; Neurath H Biochemistry; 1971 Sep; 10(19):3541-6. PubMed ID: 5169540 [No Abstract] [Full Text] [Related]
12. Structural constraints of inhibitors for binding at two active sites on somatic angiotensin converting enzyme. Perich RB; Jackson B; Johnston CI Eur J Pharmacol; 1994 Feb; 266(3):201-11. PubMed ID: 8174603 [TBL] [Abstract][Full Text] [Related]
13. Identification of the vaccinia virus mRNA guanyltransferase active site lysine. Niles EG; Christen L J Biol Chem; 1993 Nov; 268(33):24986-9. PubMed ID: 8227060 [TBL] [Abstract][Full Text] [Related]
14. Rabbit pulmonary angiotensin-converting enzyme: the NH2-terminal fragment with enzymatic activity and its formation from the native enzyme by NH4OH treatment. Iwata K; Blacher R; Soffer RL; Lai CY Arch Biochem Biophys; 1983 Nov; 227(1):188-201. PubMed ID: 6314908 [TBL] [Abstract][Full Text] [Related]
15. The catalytic mechanism of angiotensin converting enzyme. Bünning P Clin Exp Hypertens A; 1983; 5(7-8):1263-75. PubMed ID: 6315268 [TBL] [Abstract][Full Text] [Related]
16. Hydrolysis of substance P and its analogs by angiotensin-converting enzyme from rat lung. Characterization of endopeptidase activity of the enzyme. Yokosawa H; Endo S; Ohgaki Y; Maeyama J; Ishii S J Biochem; 1985 Nov; 98(5):1293-9. PubMed ID: 2418012 [TBL] [Abstract][Full Text] [Related]
17. Mutations in two specific residues of testicular angiotensin-converting enzyme change its catalytic properties. Sen I; Kasturi S; Abdul Jabbar M; Sen GC J Biol Chem; 1993 Dec; 268(34):25748-54. PubMed ID: 7902354 [TBL] [Abstract][Full Text] [Related]
18. Labeling of specific lysine residues at the active site of glutamine synthetase. Colanduoni J; Villafranca JJ J Biol Chem; 1985 Dec; 260(28):15042-50. PubMed ID: 2415512 [TBL] [Abstract][Full Text] [Related]
19. Tripeptidyl carboxypeptidase activity of kininase II (angiotensin-converting enzyme). Inokuchi J; Nagamatsu A Biochim Biophys Acta; 1981 Dec; 662(2):300-7. PubMed ID: 6274413 [TBL] [Abstract][Full Text] [Related]
20. Critical lysine residue at the chloride binding site of angiotensin converting enzyme. Shapiro R; Riordan JF Biochemistry; 1983 Nov; 22(23):5315-21. PubMed ID: 6317019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]