BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 6130520)

  • 41. Cyclic GMP metabolism in Tetrahymena pyriformis synchronized by a single hypoxic shock.
    Gray NC; Dickinson JR; Swoboda BE
    FEBS Lett; 1977 Sep; 81(2):311-4. PubMed ID: 21815
    [No Abstract]   [Full Text] [Related]  

  • 42. Cyclic nucleotide changes in X-irradiated synchronized Tetrahymena.
    Charp PA; Whitson GL
    Radiat Res; 1978 May; 74(2):323-34. PubMed ID: 208095
    [No Abstract]   [Full Text] [Related]  

  • 43. Effect of hypophysectomy on cyclic 3',5'-nucleotidemetabolizing enzymes in the rat thyroid gland.
    Nagasaka A; Hidaka H; Itoh H; Nakagawa H; Kataoka K; Yamaguchi A; Iwase K; Nakai A; Ohyama T; Aono T
    J Endocrinol; 1985 Jun; 105(3):363-9. PubMed ID: 2860196
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cyclic-GMP-regulated enzymes and their possible physiological functions.
    Walter U
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():249-58. PubMed ID: 6145321
    [No Abstract]   [Full Text] [Related]  

  • 45. Stimulation of guanosine 3',5'-monophosphate-phosphodiesterase activity by adrenocorticotropic hormone-activated increase of guanosine 3',5'-monophosphate in isolated adrenocortical carcinoma cells.
    Perchellet JP; Sharma RK
    Endocrinology; 1979 Oct; 105(4):879-83. PubMed ID: 225158
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stimulation of hamster adipocyte cyclic 3':5'-nucleotide phosphodiesterase activity by ionophore A23187 and calcium.
    Nemecek GM
    J Cyclic Nucleotide Res; 1978 Aug; 4(4):299-309. PubMed ID: 214467
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Cyclic AMP-specific nucleotide phosphodiesterase from the insoluble fraction of the human brain].
    Kireeva NN; Bobruskin ID; Severin SE
    Biokhimiia; 1995 May; 60(5):694-708. PubMed ID: 7662796
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of intracellular cyclic GMP levels in olfactory sensory neurons.
    Moon C; Simpson PJ; Tu Y; Cho H; Ronnett GV
    J Neurochem; 2005 Oct; 95(1):200-9. PubMed ID: 16181424
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sequential alterations in the hepatic content and metabolism of cyclic AMP and cyclic GMP induced by DL-ethionine: evidence for malignant transformation of liver with a sustained increase in cyclic AMP.
    DeRubertis FR; Craven PA
    Metabolism; 1976 Dec; 25(12):1611-25. PubMed ID: 186692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Control of platelet activation by cyclic AMP turnover and cyclic nucleotide phosphodiesterase type-3.
    Feijge MA; Ansink K; Vanschoonbeek K; Heemskerk JW
    Biochem Pharmacol; 2004 Apr; 67(8):1559-67. PubMed ID: 15041473
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochemical regulation and physiological significance of cyclic nucleotides in the nervous system.
    Kebabian JW
    Adv Cyclic Nucleotide Res; 1977; 8():421-508. PubMed ID: 21551
    [No Abstract]   [Full Text] [Related]  

  • 52. [Metabolism of cGMP with K+ concentration increase in the medium causing depolarization of cortical cell membranes in normal and irradiated rats].
    Skopenko EV; Bratus' NI; Parkhomets TI; Vasil'ev AN; Kucherenko NE
    Ukr Biokhim Zh (1978); 1985; 57(2):76-9. PubMed ID: 2860748
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of dexamethasone on adenosine 3',5'-monophosphate content and phosphodiesterase activities in 3T3-L1 adipocytes.
    Elks ML; Manganiello VC; Vaughan M
    Endocrinology; 1984 Oct; 115(4):1350-6. PubMed ID: 6207010
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphodiesterase dysfunction, cyclic GMP accumulation, and visual cell degeneration in early-onset inherited blindness.
    Lolley RN; Lee RH
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():315-27. PubMed ID: 6145326
    [No Abstract]   [Full Text] [Related]  

  • 55. Studies on cyclic nucleotides in cancer. I. Adenylate guanylate cyclase and protein kinases in the prostatic sarcoma tissue.
    Shima S; Kawashima Y; Hirai M; Kouyama H
    Biochim Biophys Acta; 1976 Sep; 444(2):571-8. PubMed ID: 9148
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Selective inhibitors of three forms of cyclic nucleotide phosphodiesterase--basic and potential clinical applications.
    Hidaka H; Endo T
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():245-59. PubMed ID: 6144253
    [No Abstract]   [Full Text] [Related]  

  • 57. Angiotensin-converting enzyme inhibition prevents myocardial infarction-induced increase in renal cortical cGMP and cAMP phosphodiesterase activities.
    Clauss F; Charloux A; Piquard F; Doutreleau S; Talha S; Zoll J; Lugnier C; Geny B
    Fundam Clin Pharmacol; 2015 Aug; 29(4):352-61. PubMed ID: 25939307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium dependent regulation of brain and cardiac muscle adenylate cyclase.
    Potter JD; Piascik MT; Wisler PL; Robertson SP; Johnson CL
    Ann N Y Acad Sci; 1980; 356():220-31. PubMed ID: 6263149
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Rv0805 gene from Mycobacterium tuberculosis encodes a 3',5'-cyclic nucleotide phosphodiesterase: biochemical and mutational analysis.
    Shenoy AR; Sreenath N; Podobnik M; Kovacevic M; Visweswariah SS
    Biochemistry; 2005 Dec; 44(48):15695-704. PubMed ID: 16313172
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of cyclic GMP in the mediation of circadian rhythmicity of the adenylate cyclase-cyclic AMP-phosphodiesterase system in Euglena.
    Tong J; Edmunds LN
    Biochem Pharmacol; 1993 May; 45(10):2087-91. PubMed ID: 8390260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.