These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6130803)

  • 1. Pyruvate kinase and alanine synthesis in skeletal muscle.
    Palmer TN; Caldecourt MA; Slavin JP
    Biosci Rep; 1982 Nov; 2(11):941-8. PubMed ID: 6130803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of phosphoenolpyruvate carboxykinase in muscle alanine synthesis.
    Palmer TN; Caldecourt MA; Warner JP; Sugden MC
    Biochem J; 1984 Dec; 224(3):971-6. PubMed ID: 6151838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid oxidation and alanine production in rat hemidiaphragm in vitro. Effects of dichloroacetate.
    Palmer TN; Caldecourt MA; Sugden MC
    Biochem J; 1984 Oct; 223(1):113-7. PubMed ID: 6149743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The release of alanine by rat diaphragm muscle in vitro.
    Snell K; Duff DA
    Biochem J; 1977 Feb; 162(2):399-403. PubMed ID: 849291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The formation of alanine from amino acids in diaphragm muscle of the rat.
    Goldstein L; Newsholme EA
    Biochem J; 1976 Feb; 154(2):555-8. PubMed ID: 938466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of diabetes and the redox potential on amino acid content and release by isolated rat hemidiaphragms.
    Buse MG; Weigand DA; Peeler D; Hedden MP
    Metabolism; 1980 Jul; 29(7):605-16. PubMed ID: 7382825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adrenergic inhibition of branched-chain 2-oxo acid dehydrogenase in rat diaphragm muscle in vitro.
    Palmer TN; Caldecourt MA; Sugden MC
    Biochem J; 1983 Oct; 216(1):63-70. PubMed ID: 6140003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolytic origin of alanine formed in rat diaphragm muscle in vitro.
    Caldecourt MA; Cox DJ; Sugden MC; Palmer TN
    Biochem J; 1985 Nov; 231(3):801-4. PubMed ID: 4074339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of branched-chain amino acid oxidation in rat hemidiaphragms in vitro by glucose and ketone bodies.
    Palmer TN; Caldecourt MA; Warner JP; Sugden MC
    Biochem Int; 1985 Sep; 11(3):407-13. PubMed ID: 4062956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alanine formation by rat muscle homogenate.
    Ozand PT; Tildon JT; Wapnir RA; Cornblath M
    Biochem Biophys Res Commun; 1973 Jul; 53(1):251-7. PubMed ID: 4354932
    [No Abstract]   [Full Text] [Related]  

  • 11. L-Phenylalanine inhibition of muscle pyruvate kinase.
    Palmer TN; Odedra BR
    Biosci Rep; 1982 Oct; 2(10):825-33. PubMed ID: 7171746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphibolic role of the Krebs cycle in the insulin-stimulated protein synthesis.
    Mohan C; Memon RA; Bessman SP
    Arch Biochem Biophys; 1991 Aug; 289(1):83-9. PubMed ID: 1680313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin and possible significance of alanine production by skeletal muscle.
    Odessey R; Khairallah EA; Goldberg AL
    J Biol Chem; 1974 Dec; 249(23):7623-9. PubMed ID: 4436328
    [No Abstract]   [Full Text] [Related]  

  • 14. Lactate production and absence of gluconeogenesis from placental transferred substrates in fetuses from fed and 48-H starved rats.
    Palacin M; LasunciĆ³n MA; Herrera E
    Pediatr Res; 1987 Jul; 22(1):6-10. PubMed ID: 3627873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose utilization in heart, diaphragm and skeletal muscle during the fed-to-starved transition.
    Holness MJ; Sugden MC
    Biochem J; 1990 Aug; 270(1):245-9. PubMed ID: 2396984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the inhibition of pyruvate kinase caused by phenylalanine and phenylpyruvate in rat brain cortex.
    Feksa LR; Cornelio AR; Dutra-Filho CS; de Souza Wyse AT; Wajner M; Wannmacher CM
    Brain Res; 2003 Apr; 968(2):199-205. PubMed ID: 12663089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of branched-chain amino acid oxidation in isolated muscles, nerves and aortas of rats.
    Buse MG; Jursinic S; Reid SS
    Biochem J; 1975 Jun; 148(3):363-74. PubMed ID: 1200982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of glucose, ribose, alanine, and glutamate by Leishmania braziliensis panamensis.
    Keegan FP; Sansone L; Blum JJ
    J Protozool; 1987 May; 34(2):174-9. PubMed ID: 2884307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of glucose, pyruvate, lactate, and amino acids on muscle protein synthesis.
    Hedden MP; Buse MG
    Am J Physiol; 1982 Mar; 242(3):E184-92. PubMed ID: 7065176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of cell heterogeneity on skeletal muscle lactate kinetics.
    Pagliassotti MJ; Donovan CM
    Am J Physiol; 1990 Apr; 258(4 Pt 1):E625-34. PubMed ID: 2185646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.