These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 6130847)
1. Existence of noradrenalin cells and serotonin cells in the pituitary gland of Rana catesbeiana. Kondo Y; Nagatsu I; Yoshida M; Karasawa N; Nagatsu T Cell Tissue Res; 1983; 228(2):405-8. PubMed ID: 6130847 [TBL] [Abstract][Full Text] [Related]
2. Distributions of tyrosine hydroxylase-, dopamine-beta-hydroxylase-, and phenylethanolamine-N-methyltransferase-immunoreactive neurons in the brain of the hamster (Mesocricetus auratus). Vincent SR J Comp Neurol; 1988 Feb; 268(4):584-99. PubMed ID: 2895779 [TBL] [Abstract][Full Text] [Related]
3. Immunocytochemical localization of tyrosine hydroxylase, dopamine-beta-hydroxylase and phenylethanolamine-N-methyltransferase in the adrenal glands of the frog and rat by a peroxidase-antiperoxidase method. Nagatsu I; Karasawa N; Kondo Y; Inagaki S Histochemistry; 1979 Nov; 64(2):131-44. PubMed ID: 43302 [TBL] [Abstract][Full Text] [Related]
4. Catecholamine-synthesizing enzymes in the rat pituitary. An immunohistochemical study. Bäck N; Soinila S; Joh TH; Rechardt L Histochemistry; 1987; 86(5):459-64. PubMed ID: 2884200 [TBL] [Abstract][Full Text] [Related]
5. Phenylethanolamine N-methyltransferase-(PNMT)-like immunoreactivity in the rat parathyroid gland. Bäck N; Soinila S Histochemistry; 1990; 94(4):415-8. PubMed ID: 1977727 [TBL] [Abstract][Full Text] [Related]
6. Distribution of biogenic amines and related enzymes in the rat pituitary gland. Saavedra JM; Palkovits M; Kizer JS; Brownstein M; Zivin JA J Neurochem; 1975 Sep; 25(3):257-60. PubMed ID: 240000 [No Abstract] [Full Text] [Related]
7. Distribution of dopamine-, noradrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. Armstrong DM; Ross CA; Pickel VM; Joh TH; Reis DJ J Comp Neurol; 1982 Dec; 212(2):173-87. PubMed ID: 6142061 [TBL] [Abstract][Full Text] [Related]
8. Immunohistochemical and histochemical evidence for the presence of noradrenaline, serotonin and gamma-aminobutyric acid in chief cells of the mouse carotid body. Oomori Y; Nakaya K; Tanaka H; Iuchi H; Ishikawa K; Satoh Y; Ono K Cell Tissue Res; 1994 Nov; 278(2):249-54. PubMed ID: 8001081 [TBL] [Abstract][Full Text] [Related]
9. The distribution of tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyltransferase immunoreactive neurons in the feline medulla oblongata. Reiner PB; Vincent SR J Comp Neurol; 1986 Jun; 248(4):518-31. PubMed ID: 2873156 [TBL] [Abstract][Full Text] [Related]
10. A species-specific population of tyrosine hydroxylase-immunoreactive neurons in the medial amygdaloid nucleus of the Syrian hamster. Asmus SE; Kincaid AE; Newman SW Brain Res; 1992 Mar; 575(2):199-207. PubMed ID: 1349252 [TBL] [Abstract][Full Text] [Related]
11. Transmitter histochemistry of the rat olfactory bulb. I. Immunohistochemical localization of monoamine synthesizing enzymes. Support for intrabulbar, periglomerular dopamine neurons. Halász N; Ljungdahl A; Hökfelt T; Johansson O; Goldstein M; Park D; Biberfeld P Brain Res; 1977 May; 126(3):455-74. PubMed ID: 16685 [TBL] [Abstract][Full Text] [Related]
12. The ontogenic appearance of tyrosine hydroxylase-, serotonin-, gamma-aminobutyric acid-, calcitonin gene-related peptide-, substance P-, and synaptophysin-immunoreactivity in rat pituitary gland. Szabat E; Vanhatalo S; Soinila S Int J Dev Neurosci; 1998 Oct; 16(6):449-60. PubMed ID: 9881293 [TBL] [Abstract][Full Text] [Related]
13. Distribution and origin of noradrenergic and serotonergic fibers in the cochlear nucleus and inferior colliculus of the rat. Klepper A; Herbert H Brain Res; 1991 Aug; 557(1-2):190-201. PubMed ID: 1747753 [TBL] [Abstract][Full Text] [Related]
14. Immunohistochemical demonstration of tyrosine hydroxylase (TH)-positive but dopamine beta-hydroxylase (DBH)-negative neuron-like cells in the pineal gland of golden hamsters. Jin KL; Shiotani Y; Kawai Y; Kiyama H Neurosci Lett; 1988 Oct; 93(1):28-31. PubMed ID: 2905436 [TBL] [Abstract][Full Text] [Related]
15. Catecholamine synthesizing enzymes in 70 cases of functioning and non-functioning phaeochromocytoma and extra-adrenal paraganglioma. Kimura N; Miura Y; Nagatsu I; Nagura H Virchows Arch A Pathol Anat Histopathol; 1992; 421(1):25-32. PubMed ID: 1353277 [TBL] [Abstract][Full Text] [Related]
16. Catecholamine innervation of the rat hypoglossal nucleus. Aldes LD; Chronister RB; Shelton C; Haycock JW; Marco LA; Wong DL Brain Res Bull; 1988 Aug; 21(2):305-12. PubMed ID: 2903786 [TBL] [Abstract][Full Text] [Related]
17. Immunohistochemical localization of the catecholamine-synthesizing enzymes, substance P and enkephalin in the human fetal sympathetic ganglion. Hervonen A; Pickel VM; Joh TH; Reis DJ; Linnoila I; Miller RJ Cell Tissue Res; 1981; 214(1):33-42. PubMed ID: 6162566 [TBL] [Abstract][Full Text] [Related]
18. Tyrosine-hydroxylase immunoreactive fibres in the rat anterior pituitary. Bayet MC; Schussler N; Verney C; Peillon F Neuroreport; 1994 Jul; 5(12):1505-8. PubMed ID: 7948849 [TBL] [Abstract][Full Text] [Related]
19. CNS monoamine cell groups projecting to pancreatic vagal motor neurons: a transneuronal labeling study using pseudorabies virus. Loewy AD; Franklin MF; Haxhiu MA Brain Res; 1994 Feb; 638(1-2):248-60. PubMed ID: 7515322 [TBL] [Abstract][Full Text] [Related]
20. Immunohistochemical studies on the coexistence of catecholamine-synthesizing enzymes and neuropeptide Y in nerve fibers of the porcine pineal gland. Kaleczyc J; Przybylska B; Majewski M; Lewczuk B J Pineal Res; 1994 Aug; 17(1):20-4. PubMed ID: 7853140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]