These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6131401)

  • 1. Three cell lines from a spontaneous murine astrocytoma show variation in astrocytic differentiation.
    Pilkington GJ; Lantos PL; Darling JL; Thomas DG
    Neurosci Lett; 1982 Dec; 34(3):315-20. PubMed ID: 6131401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumorigenicity of cell lines (VMDk) derived from a spontaneous murine astrocytoma. Histology, fine structure and immunocytochemistry of tumours.
    Pilkington GJ; Darling JL; Lantos PL; Thomas DG
    J Neurol Sci; 1985 Dec; 71(2-3):145-64. PubMed ID: 2418158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell lines (VMDk) derived from a spontaneous murine astrocytoma. Morphological and immunocytochemical characterization.
    Pilkington GJ; Darling JL; Lantos PL; Thomas DG
    J Neurol Sci; 1983 Dec; 62(1-3):115-39. PubMed ID: 6321667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning and transmission electron microscopy of cloned rat astrocytoma cells treated with dibutyryl cyclic AMP in vitro.
    Spence AM; Coates PW
    J Cancer Res Clin Oncol; 1981; 100(1):51-8. PubMed ID: 6263933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ultrastructure of glial tumors of astrocytic lineage: a review.
    Liberski PP
    Folia Neuropathol; 1998; 36(3):161-77. PubMed ID: 9833393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of glial filament protein and vimentin in the same intermediate filament system in human glioma cells.
    Wang E; Cairncross JG; Liem RK
    Proc Natl Acad Sci U S A; 1984 Apr; 81(7):2102-6. PubMed ID: 6371809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant cell astrocytoma with histiocytic infiltrate. Definition of a subgroup of monstrocellular brain tumors.
    Tsao MS; Becker L; Finlayson M
    Acta Neuropathol; 1983; 59(1):75-7. PubMed ID: 6837271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peculiar changes in Rosenthal fibres in an atypical astrocytoma.
    Radner H; Kleinert R; Vennigerholz F; Denk H
    Neuropathol Appl Neurobiol; 1990 Apr; 16(2):171-7. PubMed ID: 2345600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of primary glial cell cultures in developmental studies of the central nervous system.
    de Vellis J; Morrison RS; Peng WW; Arenander AT
    Birth Defects Orig Artic Ser; 1983; 19(4):67-78. PubMed ID: 6347272
    [No Abstract]   [Full Text] [Related]  

  • 10. Immunolocalization of fascin, an actin-bundling protein and glial fibrillary acidic protein in human astrocytoma cells.
    Mondal S; Dirks P; Rutka JT
    Brain Pathol; 2010 Jan; 20(1):190-9. PubMed ID: 19170683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pineal astrocytoma: report of a case, confined to the epiphysis, with immunocytochemical and electron microscopic studies.
    Papasozomenos S; Shapiro S
    Cancer; 1981 Jan; 47(1):99-103. PubMed ID: 7006792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astrocyte cell lineage. II. Mouse fibrous astrocytes and reactive astrocytes in cultures have vimentin- and GFP-containing intermediate filaments.
    Fedoroff S; White R; Neal J; Subrahmanyan L; Kalnins VI
    Brain Res; 1983 Apr; 283(2-3):303-15. PubMed ID: 6303521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density.
    Pekny M; Eliasson C; Chien CL; Kindblom LG; Liem R; Hamberger A; Betsholtz C
    Exp Cell Res; 1998 Mar; 239(2):332-43. PubMed ID: 9521851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infantile small cell gliomas.
    Friede RL; Janzer RC; Roessmann U
    Acta Neuropathol; 1982; 57(2-3):103-10. PubMed ID: 6181645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal and astrocytic differentiation in human neuroepithelial neoplasms. An immunohistochemical study.
    Roessmann U; Velasco ME; Gambetti P; Autilio-Gambetti L
    J Neuropathol Exp Neurol; 1983 Mar; 42(2):113-21. PubMed ID: 6338157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A comparison between astrocytoma cells and the developing astrocytes in human embryo brain by electron microscopy].
    Hang Z; Wei Y; Liao W
    Zhonghua Bing Li Xue Za Zhi; 1995 Apr; 24(2):65-8. PubMed ID: 7788727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Id genes encoding inhibitors of transcription are expressed during in vitro astrocyte differentiation and in cell lines derived from astrocytic tumors.
    Andres-Barquin PJ; Hernandez MC; Hayes TE; McKay RD; Israel MA
    Cancer Res; 1997 Jan; 57(2):215-20. PubMed ID: 9000557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo.
    Dai C; Celestino JC; Okada Y; Louis DN; Fuller GN; Holland EC
    Genes Dev; 2001 Aug; 15(15):1913-25. PubMed ID: 11485986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency of surface microprojections and coated vesicles with increased malignancy in human astrocytic neoplasms.
    Hess JR
    Acta Neuropathol; 1978 Nov; 44(2):151-3. PubMed ID: 716844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumorigenicity of six clones of a cultured neoplastic cell line derived from a spontaneous murine astrocytoma: morphology and immunocytochemistry of tumours.
    Koppel H; Pilkington GJ; Lantos PL
    J Neurol Sci; 1988 Feb; 83(2-3):227-42. PubMed ID: 3356990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.