BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 6131668)

  • 1. Role of pyruvate carboxylation in the energy-linked regulation of pool sizes of tricarboxylic acid-cycle intermediates in the myocardium.
    Peuhkurinen KJ; Nuutinen EM; Pietiläinen EP; Hiltunen JK; Hassinen IE
    Biochem J; 1982 Dec; 208(3):577-81. PubMed ID: 6131668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyruvate carboxylation as an anaplerotic mechanism in the isolated perfused rat heart.
    Peuhkurinen KJ; Hassinen IE
    Biochem J; 1982 Jan; 202(1):67-76. PubMed ID: 7082318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elimination and replenishment of tricarboxylic acid-cycle intermediates in myocardium.
    Nuutinen EM; Peuhkurinen KJ; Pietiläinen EP; Hiltunen JK; Hassinen IE
    Biochem J; 1981 Mar; 194(3):867-75. PubMed ID: 6796067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of diabetes, fatty acids, and ketone bodies on tricarboxylic acid cycle metabolism in the perfused rat heart.
    Bowman RH
    J Biol Chem; 1966 Jul; 241(13):3041-8. PubMed ID: 5912101
    [No Abstract]   [Full Text] [Related]  

  • 5. Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart.
    Wiesner RJ; Kreutzer U; Rösen P; Grieshaber MK
    Biochim Biophys Acta; 1988 Oct; 936(1):114-23. PubMed ID: 2902879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of the alanine aminotransferase reaction in the formation of alpha-ketoglutarate in rat liver mitochondria.
    Lenartowicz E; Wojtczak AB
    Arch Biochem Biophys; 1988 Jan; 260(1):309-19. PubMed ID: 2893586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate parameters of the tricarboxylic acid cycle.
    McElroy FA; Williams GR
    Arch Biochem Biophys; 1968 Aug; 126(2):492-502. PubMed ID: 5672510
    [No Abstract]   [Full Text] [Related]  

  • 8. Paths of carbon in gluconeogenesis and lipogenesis: the role of mitochondria in supplying precursors of phosphoenolpyruvate.
    Lardy HA; Paetkau V; Walter P
    Proc Natl Acad Sci U S A; 1965 Jun; 53(6):1410-5. PubMed ID: 5217643
    [No Abstract]   [Full Text] [Related]  

  • 9. Accumulation and disposal of tricarboxylic acid cycle intermediates during propionate oxidation in the isolated perfused rat heart.
    Peuhkurinen KJ
    Biochim Biophys Acta; 1982 Oct; 721(2):124-34. PubMed ID: 7138913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic compartmentation of pyruvate in the isolated perfused rat heart.
    Peuhkurinen KJ; Hiltunen JK; Hassinen IE
    Biochem J; 1983 Jan; 210(1):193-8. PubMed ID: 6405740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy metabolism of Phycomyces blakesleeanus. The citric acid cycle and associated amino acids.
    Gangloff EC
    Can J Microbiol; 1966 Feb; 12(1):1-4. PubMed ID: 5925648
    [No Abstract]   [Full Text] [Related]  

  • 12. Control of citric acid cycle activity in rat heart mitochondria.
    LaNoue K; Nicklas WJ; Williamson JR
    J Biol Chem; 1970 Jan; 245(1):102-11. PubMed ID: 4312474
    [No Abstract]   [Full Text] [Related]  

  • 13. Spatial heterogeneity of energy turnover in the heart.
    Decking UK; Skwirba S; Zimmermann MF; Preckel B; Thämer V; Deussen A; Schrader J
    Pflugers Arch; 2001 Feb; 441(5):663-73. PubMed ID: 11294248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism related to the tricarboxylic acid cycle in rat brain slices. Observations on CO 2 fixation and metabolic compartmentation.
    Cheng SC; Nakamura R
    Brain Res; 1972 Mar; 38(2):355-70. PubMed ID: 5028531
    [No Abstract]   [Full Text] [Related]  

  • 15. Metabolic studies on heart mitochondria. I. The operation of the normal tricarboxylic acid cycle in the oxidation of pyruvate.
    MONTGOMERY CM; WEBB JL
    J Biol Chem; 1956 Jul; 221(1):347-57. PubMed ID: 13345824
    [No Abstract]   [Full Text] [Related]  

  • 16. Pyruvate, glutamate and tricarboxylic acid intermediates in the crustacean stretch receptor neurone after prolonged impulse activity.
    Giacobini E; Marchisio PC
    Acta Physiol Scand; 1966; 66(1):247-8. PubMed ID: 5935679
    [No Abstract]   [Full Text] [Related]  

  • 17. Alanine and succinate accumulation in the perfused rat heart during hypoxia.
    Fréminet A; Leclerc L; Poyart C; Huel C; Gentil M
    J Physiol (Paris); 1980; 76(2):113-7. PubMed ID: 7400977
    [No Abstract]   [Full Text] [Related]  

  • 18. The regulation of glutamate metabolism by tricarboxylic acid-cycle activity in rat brain mitochondria.
    Dennis SC; Clark JB
    Biochem J; 1978 Apr; 172(1):155-62. PubMed ID: 656069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of amino acid catabolism in the formation of the tricarboxylic acid cycle intermediates and ammonia in anoxic rat heart.
    Pisarenko OI; Solomatina ES; Studneva IM
    Biochim Biophys Acta; 1986 Feb; 885(2):154-61. PubMed ID: 2868758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interrelationships between malate-aspartate shuttle and citric acid cycle in rat heart mitochondria.
    LaNoue KF; Williamson JR
    Metabolism; 1971 Feb; 20(2):119-40. PubMed ID: 4322086
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.