These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 6131819)

  • 1. Phosphoinositide metabolism and hormone action.
    Farese RV
    Endocr Rev; 1983; 4(1):78-95. PubMed ID: 6131819
    [No Abstract]   [Full Text] [Related]  

  • 2. The phosphatidate-phosphoinositide cycle: an intracellular messenger system in the action of hormones and neurotransmitters.
    Farese RV
    Metabolism; 1983 Jun; 32(6):628-41. PubMed ID: 6133206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipids as intermediates in hormone action.
    Farese RV
    Mol Cell Endocrinol; 1984 Apr; 35(1):1-14. PubMed ID: 6143700
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of inositide phospholipids in the action of steroidogenic hormones.
    Farese RV
    Cell Calcium; 1982 Oct; 3(4-5):441-50. PubMed ID: 6297742
    [No Abstract]   [Full Text] [Related]  

  • 5. A possible mechanism whereby parathyroid hormone stimulates phospholipid synthesis in canine renal tubules.
    Esbrit P; Navarro F; Manzano F
    Bone Miner; 1988 Apr; 4(1):7-16. PubMed ID: 2847836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the phosphatidate-phosphoinositide cycle in the action of steroidogenic hormones.
    Farese RV
    Endocr Res; 1984-1985; 10(3-4):515-32. PubMed ID: 6100255
    [No Abstract]   [Full Text] [Related]  

  • 7. Stimulation of phosphatidic acid and phosphatidylinositol labeling in luteal cells by luteinizing hormone releasing hormone.
    Leung PC; Raymond V; Labrie F
    Endocrinology; 1983 Mar; 112(3):1138-40. PubMed ID: 6337044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further observations on the increases in inositide phospholipids after stimulation by ACTH, cAMP and insulin, and on discrepancies in phosphatidylinositol mass and 32PO4-labeling during inhibition of hormonal effects by cycloheximide.
    Farese RV; Sabir MA; Larson RE; Trudeau W
    Cell Calcium; 1983 Jul; 4(3):195-218. PubMed ID: 6311422
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of angiotensin II, K+, adrenocorticotropin, serotonin, adenosine 3',5'-monophosphate, guanosine 3',5'-monophosphate, A23187, and EGTA on aldosterone synthesis and phospholipid metabolism in the rat adrenal zona glomerulosa.
    Farese RV; Larson RE; Sabir MA; Gomez-Sanchez CE
    Endocrinology; 1983 Oct; 113(4):1377-86. PubMed ID: 6311519
    [No Abstract]   [Full Text] [Related]  

  • 10. Involvement of phosphatidylinositol breakdown in elevation of cytosol Ca2+ by hormones and relationship to prostaglandin formation.
    Fain JN
    Horiz Biochem Biophys; 1982; 6():237-76. PubMed ID: 6311717
    [No Abstract]   [Full Text] [Related]  

  • 11. On the mechanism whereby ACTH and cyclic AMP increase adrenal polyphosphoinositides. Rapid stimulation of the synthesis of phosphatidic acid and derivatives of CDP - diacylglycerol.
    Farese RV; Sabir MA; Larson RE
    J Biol Chem; 1980 Aug; 255(15):7232-7. PubMed ID: 6248553
    [No Abstract]   [Full Text] [Related]  

  • 12. Parathyroid hormone-mediated incorporation of 32P-orthophosphate into phosphatidic acid and phosphatidylinositol in renal cortical slices.
    Lo H; Lehotay DC; Katz D; Levey GS
    Endocr Res Commun; 1976; 3(6):377-85. PubMed ID: 188626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid effects of angiotensin-II on polyphosphoinositide metabolism in the rat adrenal glomerulosa.
    Farese RV; Larson RE; Davis JS
    Endocrinology; 1984 Jan; 114(1):302-4. PubMed ID: 6317349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phosphatidate-polyphosphoinositide cycle: activation by parathyroid hormone and dibutyryl-cAMP in rabbit kidney cortex.
    Farese RV; Bidot-López P; Sabir MA; Larson RE
    Ann N Y Acad Sci; 1981; 372():539-51. PubMed ID: 6280554
    [No Abstract]   [Full Text] [Related]  

  • 15. [Membrane-bound hormone receptors. Physiological and pathological variations].
    Chevillotte E; Devynck MA; Meyer P; Rouzaire-Dubois B
    Nouv Presse Med; 1975 Sep; 4(30):2161, 2163-4. PubMed ID: 241057
    [No Abstract]   [Full Text] [Related]  

  • 16. [Hypothalamic releasing and inhibiting hormones].
    Vanha-Perttula T
    Duodecim; 1973 Oct; 20(1):1282-98. PubMed ID: 4361282
    [No Abstract]   [Full Text] [Related]  

  • 17. Sustained diacylglycerol accumulation resulting from prolonged G protein-coupled receptor agonist-induced phosphoinositide breakdown in hepatocytes.
    Nilssen LS; Dajani O; Christoffersen T; Sandnes D
    J Cell Biochem; 2005 Feb; 94(2):389-402. PubMed ID: 15526278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gonadotropin-releasing hormone (GnRH) rapidly stimulates the formation of inositol phosphates and diacyglycerol in rat granulosa cells: further evidence for the involvement of Ca2+ and protein kinase C in the action of GnRH.
    Davis JS; West LA; Farese RV
    Endocrinology; 1986 Jun; 118(6):2561-71. PubMed ID: 3009164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hormone-induced alteration in brain transmitter metabolism and brain function.
    Telegdy G
    Endocrinol Exp; 1982 Nov; 16(3-4):217-27. PubMed ID: 6129128
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of prostaglandin F2 alpha and a gonadotropin-releasing hormone agonist on inositol phospholipid metabolism in isolated rat corpora lutea of various ages.
    Lahav M; West LA; Davis JS
    Endocrinology; 1988 Aug; 123(2):1044-52. PubMed ID: 3293979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.