These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 6131900)
1. Direct evidence that the protein kinase catalytic subunit mediates the effects of cAMP on tyrosine aminotransferase synthesis. Boney C; Fink D; Schlichter D; Carr K; Wicks WD J Biol Chem; 1983 Apr; 258(8):4911-8. PubMed ID: 6131900 [TBL] [Abstract][Full Text] [Related]
2. Is cyclic AMP dependent protein kinase responsible for the in vivo phosphorylation of tyrosine aminotransferase? Spielholz C; Schlichter D; Wicks WD J Cyclic Nucleotide Protein Phosphor Res; 1986; 11(5):395-406. PubMed ID: 2887599 [TBL] [Abstract][Full Text] [Related]
3. Interaction of glucocorticoid hormones and cyclic nucleotides in induction of tyrosine aminotransferase in cultured hepatoma cells. Granner DK; Lee A; Thompson EB J Biol Chem; 1977 Jun; 252(11):3891-7. PubMed ID: 16922 [TBL] [Abstract][Full Text] [Related]
4. Effects of 6- and 8-substituted analogs of adenosine 3':5'-monophosphate on phosphoenolpyruvate carboxykinase and tyrosine aminotransferase in hepatoma cell cultures. Wagner K; Roper MD; Leichtling BH; Wimalasena J; Wicks WD J Biol Chem; 1975 Jan; 250(1):231-9. PubMed ID: 237887 [TBL] [Abstract][Full Text] [Related]
5. Positive and negative cAMP-mediated control of tyrosine aminotransferase synthesis in Reuber H35 hepatoma cells. Snoek GT; Voorma HO; van Wijk R Eur J Biochem; 1982 Mar; 123(1):217-22. PubMed ID: 6121706 [TBL] [Abstract][Full Text] [Related]
6. Direct cytochemical localization of catalytic subunits dissociated from cAMP-dependent protein kinase in Reuber H-35 hepatoma cells. II. Temporal and spatial kinetics. Byus CV; Fletcher WH J Cell Biol; 1982 Jun; 93(3):727-34. PubMed ID: 6288733 [TBL] [Abstract][Full Text] [Related]
7. Cytochemical identification of the regulatory subunit of the cAMP-dependent protein kinase by use of fluorescently labeled catalytic subunit. Examination of protein kinase dissociation in hepatoma cells responding to 8-Br-cAMP stimulation. Fletcher WH; Van Patten SM; Cheng HC; Walsh DA J Biol Chem; 1986 Apr; 261(12):5504-13. PubMed ID: 3007508 [TBL] [Abstract][Full Text] [Related]
8. Role of cyclic AMP-dependent protein kinase in the induction of tyrosine aminotransferase. Liu AY J Biol Chem; 1980 May; 255(10):4421-9. PubMed ID: 6102988 [No Abstract] [Full Text] [Related]
9. Further evidence for translational regulation of tyrosine aminotransferase synthesis by dibutyryl cyclic AMP in Reuber H35 hepatoma cells. Snoek GT; Voorma HO; Van Wijk R Biochim Biophys Acta; 1981 Aug; 655(1):107-12. PubMed ID: 6114749 [TBL] [Abstract][Full Text] [Related]
10. Cyclic adenonosine monophosphate does not affect the stability of the messenger ribonucleic acid for tyrosine aminotransferase in cultured hepatoma cells. Spielholz C; Schlichter D; Wicks WD Mol Endocrinol; 1988 Apr; 2(4):344-9. PubMed ID: 2454399 [TBL] [Abstract][Full Text] [Related]
11. The induction, desensitization and de-induction of tyrosine aminotransferase by 8-bromo-cyclic AMP in rat hepatoma cells. Smith JD; Liu AY Biochem J; 1988 Apr; 251(1):261-7. PubMed ID: 2898939 [TBL] [Abstract][Full Text] [Related]
12. Differential sensitivity of HTC and Fu5-5 cells for induction of tyrosine aminotransferase by 3',5'-cyclic adenosine monophosphate. Wasner G; Simons SS Mol Endocrinol; 1987 Jan; 1(1):109-20. PubMed ID: 2901031 [TBL] [Abstract][Full Text] [Related]
13. Variations in some molecular events during the early phases of the Reuber H35 cell cycle. IV-regulation of tyrosine aminotransferase. van Wijk R; Loesberg L; Snoek GT Biochimie; 1983; 65(11-12):643-52. PubMed ID: 6143573 [TBL] [Abstract][Full Text] [Related]
14. Regulation of cAMP-dependent protein kinase subunit levels in Friend erythroleukemic cells. Effects of differentiation and treatment with 8-Br-cAMP and methylisobutyl xanthine. Schwartz DA; Rubin CS J Biol Chem; 1983 Jan; 258(2):777-84. PubMed ID: 6185479 [TBL] [Abstract][Full Text] [Related]
15. Modulation of soluble ovarian adenosine 3',5'-monophosphate-dependent protein kinase activity during prepubertal development of the rat. Hunzicker-Dunn M; Jungmann RA; Evely L; Hadawi GL; Maizels ET; West DE Endocrinology; 1984 Jul; 115(1):302-11. PubMed ID: 6329653 [TBL] [Abstract][Full Text] [Related]
16. Increased turnover of the messenger RNA encoding tyrosine aminotransferase can account for the desensitization and de-induction of tyrosine aminotransferase by 8-bromo-cyclic AMP treatment and removal. Smith JD; Liu AY EMBO J; 1988 Dec; 7(12):3711-6. PubMed ID: 2905263 [TBL] [Abstract][Full Text] [Related]
17. Activation of cyclic adenosine 3':5'-monophosphate-dependent protein kinase in H35 hepatoma and Chinese hamster ovary cells by a phorbol ester tumor promoter. Byus CV; Trevillyan JM; Cavit LJ; Fletcher WH Cancer Res; 1983 Jul; 43(7):3321-6. PubMed ID: 6303580 [TBL] [Abstract][Full Text] [Related]
18. Effects of cyclic AMP, glucocorticoids and insulin on the activities of phosphatidate phosphohydrolase, tyrosine aminotransferase and glycerol kinase in isolated rat hepatocytes in relation to the control of triacylglycerol synthesis and gluconeogenesis. Pittner RA; Fears R; Brindley DN Biochem J; 1985 Jan; 225(2):455-62. PubMed ID: 2858200 [TBL] [Abstract][Full Text] [Related]
19. Pretranslational control of tyrosine aminotransferase synthesis by 8-bromo-cyclic AMP in H-4 rat hepatoma cells. Culpepper JA; Liu AY J Biol Chem; 1983 Nov; 258(22):13812-9. PubMed ID: 6196356 [TBL] [Abstract][Full Text] [Related]
20. The effects of triethyltin bromide on red cell and brain cyclic AMP-dependent protein kinases. Siebenlist KR; Taketa F J Biol Chem; 1983 Sep; 258(18):11384-90. PubMed ID: 6309845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]