These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6131973)

  • 1. The effect of dosator nozzle wall texture on capsule filling with the mG2 simulator.
    Jolliffe IG; Newton JM
    J Pharm Pharmacol; 1983 Jan; 35(1):7-11. PubMed ID: 6131973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capsule filling studies using an mG2 production machine.
    Jolliffe IG; Newton JM
    J Pharm Pharmacol; 1983 Feb; 35(2):74-8. PubMed ID: 6131990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The design and use of an instrumented mG2 capsule filling machine simulator.
    Jolliffe IG; Newton JM; Cooper D
    J Pharm Pharmacol; 1982 Apr; 34(4):230-5. PubMed ID: 6124596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of material attributes and process parameters on the powder bed uniformity during a low-dose dosator capsule filling process.
    Stranzinger S; Faulhammer E; Calzolari V; Biserni S; Dreu R; Šibanc R; Paudel A; Khinast JG
    Int J Pharm; 2017 Jan; 516(1-2):9-20. PubMed ID: 27826028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical implications of theoretical consideration of capsule filling by the dosator nozzle system.
    Jolliffe IG; Newton JM
    J Pharm Pharmacol; 1982 May; 34(5):293-8. PubMed ID: 6123566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of a low-dose capsule filling process by dynamic and static tests for advanced process understanding.
    Stranzinger S; Faulhammer E; Scheibelhofer O; Calzolari V; Biserni S; Paudel A; Khinast JG
    Int J Pharm; 2018 Apr; 540(1-2):22-30. PubMed ID: 29407875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-dose capsule filling of inhalation products: critical material attributes and process parameters.
    Faulhammer E; Fink M; Llusa M; Lawrence SM; Biserni S; Calzolari V; Khinast JG
    Int J Pharm; 2014 Oct; 473(1-2):617-26. PubMed ID: 25087508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of the relationship between particle size and compression during capsule filling with an instrumented mG2 simulator.
    Jolliffe IG; Newton JM
    J Pharm Pharmacol; 1982 Jul; 34(7):415-9. PubMed ID: 6126535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of material attributes on capsule fill weight and weight variability in dosator nozzle machines.
    Faulhammer E; Llusa M; Radeke C; Scheibelhofer O; Lawrence S; Biserni S; Calzolari V; Khinast JG
    Int J Pharm; 2014 Aug; 471(1-2):332-8. PubMed ID: 24939614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The filling of granules into hard gelatine capsules.
    Podczeck F; Blackwell S; Gold M; Newton JM
    Int J Pharm; 1999 Oct; 188(1):59-69. PubMed ID: 10528083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the capsule-filling dosator process via calibrated DEM simulations.
    Madlmeir S; Loidolt P; Khinast JG
    Int J Pharm; 2019 Aug; 567():118441. PubMed ID: 31212054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of powder compressibility, speed of capsule filling and pre-compression on plug densification.
    Llusa M; Faulhammer E; Biserni S; Calzolari V; Lawrence S; Bresciani M; Khinast J
    Int J Pharm; 2014 Aug; 471(1-2):182-8. PubMed ID: 24836668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic modeling of a capsule filling process.
    Loidolt P; Madlmeir S; Khinast JG
    Int J Pharm; 2017 Oct; 532(1):47-54. PubMed ID: 28870766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The instrumentation of a Zanasi LZ/64 capsule filling machine.
    Cole GC; May G
    J Pharm Pharmacol; 1975 May; 27(5):353-8. PubMed ID: 239137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of capsule-filling machine vibrations on average fill weight.
    Llusa M; Faulhammer E; Biserni S; Calzolari V; Lawrence S; Bresciani M; Khinast J
    Int J Pharm; 2013 Sep; 454(1):381-7. PubMed ID: 23872302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Powder filling into hard gelatine capsules on a tamp filling machine.
    Podczeck F; Newton JM
    Int J Pharm; 1999 Aug; 185(2):237-54. PubMed ID: 10460919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of powder flow properties on capsule filling weight uniformity.
    Osorio JG; Muzzio FJ
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1464-75. PubMed ID: 23902366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a design space and predictive statistical model for capsule filling of low-fill-weight inhalation products.
    Faulhammer E; Llusa M; Wahl PR; Paudel A; Lawrence S; Biserni S; Calzolari V; Khinast JG
    Drug Dev Ind Pharm; 2016; 42(2):221-30. PubMed ID: 26023991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance indicators for carrier-based DPIs: Carrier surface properties for capsule filling and API properties for in vitro aerosolisation.
    Faulhammer E; Zellnitz S; Wutscher T; Stranzinger S; Zimmer A; Paudel A
    Int J Pharm; 2018 Jan; 536(1):326-335. PubMed ID: 29217472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier-based dry powder inhalation: Impact of carrier modification on capsule filling processability and in vitro aerodynamic performance.
    Faulhammer E; Wahl V; Zellnitz S; Khinast JG; Paudel A
    Int J Pharm; 2015 Aug; 491(1-2):231-42. PubMed ID: 26136200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.