These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6132460)

  • 1. Perturbation of alpha-aminoisobutyric acid transport in human placental membranes: direct effects by HgCl2, CH3HgCl, and CdCl2.
    Goodman DR; Fant ME; Harbison RD
    Teratog Carcinog Mutagen; 1983; 3(1):89-100. PubMed ID: 6132460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal inhibition of carnitine acetyltransferase activity in human placental syncytiotrophoblast: possible site of action of HgCl2, CH3HgCl, and CdCl2.
    Shoaf AR; Jarmer S; Harbison RD
    Teratog Carcinog Mutagen; 1986; 6(5):351-60. PubMed ID: 2878501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Placental amino acid uptake. IV. Transport microvillous membrane vesicles.
    Ruzycki SM; Kelley LK; Smith CH
    Am J Physiol; 1978 Jan; 234(1):C27-35. PubMed ID: 623238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-proline transport by brush border membrane vesicles prepared from human placenta.
    Boyd CA; Lund EK
    J Physiol; 1981 Jun; 315():9-19. PubMed ID: 7310726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of inorganic mercury on in vitro placental nutrient transfer and oxygen consumption.
    Urbach J; Boadi W; Brandes JM; Kerner H; Yannai S
    Reprod Toxicol; 1992; 6(1):69-75. PubMed ID: 1562801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidermal growth factor and insulin-like growth factor I differently influence the directional accumulation and transfer of 2-aminoisobutyrate (AIB) by human placental trophoblast in two-sided culture.
    Bloxam DL; Bax BE; Bax CM
    Biochem Biophys Res Commun; 1994 Mar; 199(2):922-9. PubMed ID: 8135841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal toxicity of heavy metals (cadmium and mercury) and their amelioration with ascorbic acid in rabbits.
    Ali S; Hussain S; Khan R; Mumtaz S; Ashraf N; Andleeb S; Shakir HA; Tahir HM; Khan MKA; Ulhaq M
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3909-3920. PubMed ID: 30547340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the dominant-lethal and fertility effects of the heavy metal compounds methylmercuric hydroxide, mercuric chloride, and cadmium chloride in male and female mice.
    Suter KE
    Mutat Res; 1975 Dec; 30(3):365-74. PubMed ID: 1238902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of HgCl2 to evaluate the cosubstrate: amino acid transport stoichiometry in Ehrlich ascites tumor cells.
    Dawson WD; Robinson SC; Smith TC
    J Cell Physiol; 1983 May; 115(2):131-6. PubMed ID: 6221025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac toxicity of heavy metals (cadmium and mercury) and pharmacological intervention by vitamin C in rabbits.
    Ali S; Awan Z; Mumtaz S; Shakir HA; Ahmad F; Ulhaq M; Tahir HM; Awan MS; Sharif S; Irfan M; Khan MA
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):29266-29279. PubMed ID: 32436095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy-metal toxicity in an insect cell line. Effects of cadmium chloride, mercuric chloride and methylmercuric chloride on cell viability and proliferation in Aedes albopictus cells.
    Braeckman B; Raes H; Van Hoye D
    Cell Biol Toxicol; 1997 Oct; 13(6):389-97. PubMed ID: 9352117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the growth inhibition of cultured K-562 cells by selenium, mercury or cadmium in two tissue culture media (RPMI-1640, Ham's F-10).
    Frisk P; Yaqob A; Nilsson K; Carlsson J; Lindh U
    Biometals; 2000 Jun; 13(2):101-11. PubMed ID: 11016397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of inorganic mercury on placental amino acid transport using microvillous membrane vesicles].
    Iioka H; Moriyama I; Oku M; Hino K; Itani Y; Okamura Y; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Feb; 39(2):202-6. PubMed ID: 3102650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Placental amino acid uptake. VI. Regulation by intracellular substrate.
    Steel RB; Smith CH; Kelley LK
    Am J Physiol; 1982 Jul; 243(1):C46-51. PubMed ID: 7091361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Placental amino acid uptake in normal and complicated pregnancies.
    Dicke JM; Henderson GI
    Am J Med Sci; 1988 Mar; 295(3):223-7. PubMed ID: 3354595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for modulation by ATP of amino acid transport in human placenta.
    Kudo Y; Yamada K; Fujiwara A; Kawasaki T
    Biochem Int; 1988 Mar; 16(3):485-93. PubMed ID: 3382417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human placental cholinergic system: depression of the uptake of alpha-aminoisobutyric acid in isolated human placental villi by choline acetyltransferase inhibitors.
    Rowell PP; Sastry BV
    J Pharmacol Exp Ther; 1981 Feb; 216(2):232-8. PubMed ID: 7463346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syncytiotrophoblast membrane vesicles: a model for examining the human placental cholinergic system.
    Fant ME; Harbison RD
    Teratology; 1981 Oct; 24(2):187-99. PubMed ID: 7336361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Placental membrane transport: leucine transport across the brush border and basal cell membrane surfaces.
    Anand RJ; Kanwar U; Sanyal SN
    Res Exp Med (Berl); 1996; 196(1):29-43. PubMed ID: 8833485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monosaccharide transport across microvillous membrane of human placenta.
    Johnson LW; Smith CH
    Am J Physiol; 1980 May; 238(5):C160-8. PubMed ID: 6990781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.