These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 6132584)

  • 1. ATP and ADP modulations of catalysis by F1 and Ca2+, Mg2+-ATPases.
    Boyer PD; Kohlbrenner WE; McIntosh DB; Smith LT; O'Neal CC
    Ann N Y Acad Sci; 1982; 402():65-83. PubMed ID: 6132584
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of ATP/ADP/phosphate potential on the maximal steady-state uptake of Ca2+ by skeletal sarcoplasmic reticulum.
    Dixon D; Corbett A; Haynes DH
    J Bioenerg Biomembr; 1982 Apr; 14(2):87-96. PubMed ID: 6124541
    [No Abstract]   [Full Text] [Related]  

  • 3. [Catalytic properties of mitochondrial ATP-synthetase].
    Vinogradov AD
    Biokhimiia; 1984 Aug; 49(8):1220-38. PubMed ID: 6093895
    [No Abstract]   [Full Text] [Related]  

  • 4. Quercetin interaction with the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum.
    Shoshan V; MacLennan DH
    J Biol Chem; 1981 Jan; 256(2):887-92. PubMed ID: 6108961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction mechanism of (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles. II. (ATP, ADP)-dependent Ca2+-Ca2+ exchange across the membranes.
    Takakuwa Y; Kanazawa T
    J Biol Chem; 1981 Mar; 256(6):2696-700. PubMed ID: 6110659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sarcoplasmic reticulum Ca2+-ATPase: alterations in catalysis through interaction with ATP and ADP.
    McIntosh DB
    Curr Top Cell Regul; 1984; 24():409-21. PubMed ID: 6238812
    [No Abstract]   [Full Text] [Related]  

  • 7. [Functions and localization of nucleotide-binding sites of CF1-ATPase using dialdehyde derivatives of ADP and ATP].
    Sytnik SK; Mal'ian AN
    Biokhimiia; 1983 Jun; 48(6):890-6. PubMed ID: 6224516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unifying concept for the coupling between ion pumping and ATP hydrolysis or synthesis.
    Hammes GG
    Proc Natl Acad Sci U S A; 1982 Nov; 79(22):6881-4. PubMed ID: 6129623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in affinity for calcium ions with the formation of two kinds of phosphoenzyme in the Ca2+,Mg2+-dependent ATPase of sarcoplasmic reticulum.
    Nakamura Y; Tonomura Y
    J Biochem; 1982 Feb; 91(2):449-61. PubMed ID: 6121794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of the calcium-transporting adenosinetriphosphatase by lanthanum ATP: rapid phosphoryl transfer following a rate-limiting conformational change.
    Hanel AM; Jencks WP
    Biochemistry; 1990 May; 29(21):5210-20. PubMed ID: 2143081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biphasic kinetics of ATP hydrolysis by calcium-dependent ATPase of the sarcoplasmic reticulum of skeletal muscle. Evidence for a nucleoside triphosphate effector site.
    Taylor JS; Hattan D
    J Biol Chem; 1979 Jun; 254(11):4402-7. PubMed ID: 155695
    [No Abstract]   [Full Text] [Related]  

  • 12. Coupling factor for photophosphorylation labeled with eosin isothiocyanate: activity, size, and shape in solution.
    Wagner R; Junge W
    Biochemistry; 1982 Apr; 21(8):1890-9. PubMed ID: 6177341
    [No Abstract]   [Full Text] [Related]  

  • 13. The ADP- and Mg2+-reactive calcium complex of the phosphoenzyme in skeletal sarcoplasmic reticulum Ca2+-ATPase.
    Nakamura J
    Biochim Biophys Acta; 1983 May; 723(2):182-90. PubMed ID: 6221757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probes of catalytic site cooperativity during catalysis by the chloroplast adenosine triphosphate and the adenosine triphosphate synthase.
    Kohlbrenner WE; Boyer PD
    J Biol Chem; 1983 Sep; 258(18):10881-6. PubMed ID: 6309819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermodynamic efficiency of the Ca2+-Mg2+-ATPase is one hundred percent.
    Trevorrow K; Haynes DH
    J Bioenerg Biomembr; 1984 Feb; 16(1):53-9. PubMed ID: 6152629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ADP and AMPPNP on the hydrogen-deuterium exchange kinetics in Ca2+, Mg2+-ATpase of sarcoplasmic reticulum.
    Anzai K; Kirino Y; Shimizu H
    J Biochem; 1981 Aug; 90(2):349-54. PubMed ID: 6117550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active/inactive state transitions of the chloroplast F1 ATPase are induced by a slow binding and release of Mg2+. Relationship to catalysis and control of F1 ATPases.
    Guerrero KJ; Xue ZX; Boyer PD
    J Biol Chem; 1990 Sep; 265(27):16280-7. PubMed ID: 2144528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADP-sensitive and -insensitive phosphorylated intermediates of solubilized Ca2+,Mg2+-dependent ATPase of the sarcoplasmic reticulum from skeletal muscle.
    Takisawa H; Tonomura Y
    J Biochem; 1979 Aug; 86(2):425-41. PubMed ID: 158012
    [No Abstract]   [Full Text] [Related]  

  • 19. Fluorescence properties of the Ca2+,Mg2(+)-ATPase protein of sarcoplasmic reticulum labeled with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole.
    Bailin G; Huang JR
    FEBS Lett; 1990 Jan; 259(2):254-6. PubMed ID: 2136730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the GTPase activity of the chloroplast F1-ATPase by ATP binding at noncatalytic sites.
    Xue Z; Boyer PD
    Eur J Biochem; 1989 Feb; 179(3):677-81. PubMed ID: 2522043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.