These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 6133452)

  • 1. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.
    Kribben A; Tyrakowski T; Schulz I
    Am J Physiol; 1983 May; 244(5):G480-90. PubMed ID: 6133452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of calcium uptake into rough endoplasmic reticulum of rat pancreas.
    Bayerdörffer E; Streb H; Eckhardt L; Haase W; Schulz I
    J Membr Biol; 1984; 81(1):69-82. PubMed ID: 6208363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of an ATP-dependent Ca2+ uptake system in mouse pancreatic microsomes.
    Ponnappa BC; Dormer RL; Williams JA
    Am J Physiol; 1981 Feb; 240(2):G122-9. PubMed ID: 6258447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-ion-transporting activity in two microsomal subfractions from rat pancreatic acini. Modulation by carbamylcholine.
    Richardson AE; Dormer RL
    Biochem J; 1984 Apr; 219(2):679-85. PubMed ID: 6430272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-stimulated Ca2+ transport into cholinergic Torpedo synaptic vesicles.
    Michaelson DM; Ophir I; Angel I
    J Neurochem; 1980 Jul; 35(1):116-24. PubMed ID: 6108987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium-dependent and calcium-dependent calcium transport by rat brain microsomes.
    Schellenberg GD; Swanson PD
    Biochim Biophys Acta; 1981 Oct; 648(1):13-27. PubMed ID: 6794624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium uptake into acini from rat pancreas: evidence for intracellular ATP-dependent calcium sequestration.
    Wakasugi H; Kimura T; Haase W; Kribben A; Kaufmann R; Schulz I
    J Membr Biol; 1982; 65(3):205-20. PubMed ID: 6801263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of Ca2+ transport in plasma membrane vesicles prepared from cultured pituitary cells. II. (Ca2+ + Mg2+)-ATPase-dependent Ca2+ transport activity.
    Barros F; Kaczorowski GJ
    J Biol Chem; 1984 Aug; 259(15):9404-10. PubMed ID: 6146614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+/Ca2+ countertransport in plasma membrane of rat pancreatic acinar cells.
    Bayerdörffer E; Haase W; Schulz I
    J Membr Biol; 1985; 87(2):107-19. PubMed ID: 2416927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrogenic calcium transport in plasma membrane of rat pancreatic acinar cells.
    Bayerdörffer E; Eckhardt L; Haase W; Schulz I
    J Membr Biol; 1985; 84(1):45-60. PubMed ID: 3999124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of plasma membranes from bovine carotid arteries.
    Sharma RV; Bhalla RC
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C65-75. PubMed ID: 3002186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [ATP-dependent Ca2+-uptake by the plasma membrane fraction of the myometrium].
    Kurskiĭ MD; Kosterin SA; Bratkova NF; Zimina VP; Fomin VP
    Biokhimiia; 1981 Aug; 46(8):1435-44. PubMed ID: 6115681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of frog heart sarcolemma possessing (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities.
    Morcos NC
    Biochim Biophys Acta; 1981 Apr; 643(1):55-62. PubMed ID: 6113007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ transport studied with arsenazo III in Tetrahymena microsomes. Effects of calcium ionophore A23187 and trifluoperazine.
    Muto Y; Nozawa Y
    Biochim Biophys Acta; 1985 May; 815(3):410-6. PubMed ID: 3158350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-dependent phosphate transport in sarcoplasmic reticulum and reconstituted proteoliposomes.
    Carley WW; Racker E
    Biochim Biophys Acta; 1982 May; 680(2):187-93. PubMed ID: 6212081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H+-dependent calcium uptake into an IP3-sensitive calcium pool from rat parotid gland.
    Thévenod F; Schulz I
    Am J Physiol; 1988 Oct; 255(4 Pt 1):G429-40. PubMed ID: 3263053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular fractionation of pig coronary artery smooth muscle.
    Grover AK; Samson SE; Lee RM
    Biochim Biophys Acta; 1985 Aug; 818(2):191-9. PubMed ID: 2992588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel ATP-dependent calcium transport component from rat liver plasma membranes. The transporter and the previously reported (Ca2+-Mg2+)-ATPase are different proteins.
    Lin SH
    J Biol Chem; 1985 Jul; 260(13):7850-6. PubMed ID: 2409077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a high-affinity Mg2+-independent Ca2+-ATPase from rat brain synaptosomal membranes.
    Gandhi CR; Ross DH
    J Neurochem; 1988 Jan; 50(1):248-56. PubMed ID: 2961847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The (Ca2+ + Mg2+)-stimulated ATPase of the rat parotid endoplasmic reticulum.
    Thiyagarajah P; Lim SC
    Biochem J; 1986 Apr; 235(2):491-8. PubMed ID: 2943271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.