BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 6133518)

  • 1. The binding mechanism of glutathione and the anti-tumor drug L-(alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125;NSC-163501) to gamma-glutamyltransferase.
    Schasteen CS; Curthoys NP; Reed DJ
    Biochem Biophys Res Commun; 1983 Apr; 112(2):564-70. PubMed ID: 6133518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inhibition of gamma-glutamyl transpeptidase and glutathione metabolism of isolated rat kidney cells by L-(alpha S, 5S)-alpha-amino-3-chloro-4, 5-dihydro-5-isoxazoleacetic acid (AT-125; NSC-163501).
    Reed DJ; Ellis WW; Meck RA
    Biochem Biophys Res Commun; 1980 Jun; 94(4):1273-7. PubMed ID: 6104962
    [No Abstract]   [Full Text] [Related]  

  • 3. Interaction of the antitumor drug, L-(alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125) with renal brush border membranes. Specific labeling of gamma-glutamyl transpeptidase.
    Kozak EM; Tate SS
    FEBS Lett; 1980 Dec; 122(2):175-8. PubMed ID: 6110565
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification of a highly reactive threonine residue at the active site of gamma-glutamyl transpeptidase.
    Stole E; Seddon AP; Wellner D; Meister A
    Proc Natl Acad Sci U S A; 1990 Mar; 87(5):1706-9. PubMed ID: 1968636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the effects of L(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125) on 4-aminophenol-induced nephrotoxicity in the Fischer 344 rat.
    Anthony ML; Beddell CR; Lindon JC; Nicholson JK
    Arch Toxicol; 1993; 67(10):696-705. PubMed ID: 7907856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inhibition of gamma-glutamyl transpeptidase from human pancreatic carcinoma cells by (alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125; NSC-163501).
    Allen L; Meck R; Yunis A
    Res Commun Chem Pathol Pharmacol; 1980 Jan; 27(1):175-82. PubMed ID: 6102405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of arginine residues in glutathione binding to yeast glyoxalase I.
    Schasteen CS; Reed DJ
    Biochim Biophys Acta; 1983 Jan; 742(2):419-25. PubMed ID: 6337639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of gamma-glutamyl transpeptidase with glutathione involves specific arginine and lysine residues of the heavy subunit.
    Stole E; Meister A
    J Biol Chem; 1991 Sep; 266(27):17850-7. PubMed ID: 1680853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nephrotoxicity of S-(2-chloroethyl)glutathione in the Fischer rat: evidence for gamma-glutamyltranspeptidase-independent uptake by the kidney.
    Kramer RA; Foureman G; Greene KE; Reed DJ
    J Pharmacol Exp Ther; 1987 Aug; 242(2):741-8. PubMed ID: 2886652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The in vivo disposition of 2-bromo-[14C]hydroquinone and the effect of gamma-glutamyl transpeptidase inhibition.
    Lau SS; Monks TJ
    Toxicol Appl Pharmacol; 1990 Mar; 103(1):121-32. PubMed ID: 1969181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different sites of acivicin binding and inactivation of gamma-glutamyl transpeptidases.
    Smith TK; Ikeda Y; Fujii J; Taniguchi N; Meister A
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2360-4. PubMed ID: 7892271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of intralysosomal proteolysis by cysteinyl-glycine, a product of the action of gamma-glutamyl transpeptidase on glutathione.
    Mego JL
    Biochim Biophys Acta; 1985 Aug; 841(2):139-44. PubMed ID: 2861858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of gamma-glutamyl transpeptidase with acivicin.
    Stole E; Smith TK; Manning JM; Meister A
    J Biol Chem; 1994 Aug; 269(34):21435-9. PubMed ID: 7914892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acivicin-induced alterations in renal and hepatic glutathione concentrations and in gamma-glutamyltransferase activities.
    Lantum HB; Iyer RA; Anders MW
    Biochem Pharmacol; 2004 Apr; 67(7):1421-6. PubMed ID: 15013858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subunit separation in reversed micelle system reveals the existence of active centers both on light and heavy gamma-glutamyltransferase subunits.
    Kabanov AV; Nametkin SN; Chernov NN; Klyachko NL; Levashov AV
    FEBS Lett; 1991 Dec; 295(1-3):73-6. PubMed ID: 1684940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Active centers of gamma-glutamyltransferase in the aerosol OT reverse micellar system in octane by an inhibitor analysis method].
    Nametkin SI; Kabanov AV; Levashov AV
    Bioorg Khim; 1991 Aug; 17(8):1027-32. PubMed ID: 1721511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of inactivation of glutamine amidotransferases by the antitumor drug L-(alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125).
    Tso JY; Bower SG; Zalkin H
    J Biol Chem; 1980 Jul; 255(14):6734-8. PubMed ID: 6993476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione-mediated transport across intestinal brush-border membranes.
    Vincenzini MT; Favilli F; Iantomasi T
    Biochim Biophys Acta; 1988 Jul; 942(1):107-14. PubMed ID: 2898260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential arginine residues in isoprenylcysteine protein carboxyl methyltransferase.
    Boivin D; Lin W; BĂ©liveau R
    Biochem Cell Biol; 1997; 75(1):63-9. PubMed ID: 9192075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione-degrading capacities of liver and kidney in different species.
    Hinchman CA; Ballatori N
    Biochem Pharmacol; 1990 Sep; 40(5):1131-5. PubMed ID: 1975172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.