These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 6133519)

  • 1. Inactivation of the beta-adrenergic receptor in skeletal muscle by dithiols.
    Wright M; Drummond GI
    Biochem Pharmacol; 1983 Feb; 32(3):509-15. PubMed ID: 6133519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of the beta-adrenergic receptor in cardiac muscle by dithiols.
    Prior TI; Patel V; Drummond GI
    Can J Physiol Pharmacol; 1985 Aug; 63(8):932-6. PubMed ID: 3000563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro characterization of skeletal muscle beta-adrenergic receptors coupled to adenylate cyclase.
    Reddy NB; Engel WK
    Biochim Biophys Acta; 1979 Jul; 585(3):343-59. PubMed ID: 226166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. beta-adrenergic receptor and adenylate cyclase in transverse tubules of skeletal muscle.
    Caswell AH; Baker SP; Boyd H; Potter LT; Garcia M
    J Biol Chem; 1978 May; 253(9):3049-54. PubMed ID: 205539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catecholamine and guanine nucleotide activation of skeletal muscle adenylate cyclase.
    Nambi P; Drummond GI
    Biochim Biophys Acta; 1979 Mar; 583(3):287-94. PubMed ID: 36171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affinity chromatography of the beta-adrenergic receptor from turkey erythrocytes.
    Vauquelin G; Geynet P; Hanoune J; Strosberg AD
    Eur J Biochem; 1979 Aug; 98(2):543-56. PubMed ID: 226363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dihydropyridine binding to the L-type Ca2+ channel in rabbit heart sarcolemma and skeletal muscle transverse-tubules: role of disulfide, sulfhydryl and phosphate groups.
    Murphy BJ; Washkurak AW; Tuana BS
    Biochim Biophys Acta; 1990 May; 1052(2):333-9. PubMed ID: 2159349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of adrenergic receptors and catecholamine-stimulated adenylate cyclase in hog pial membranes.
    Friedman AH; Davis JN
    Brain Res; 1980 Feb; 183(1):89-102. PubMed ID: 6244051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-adrenergic receptor-adenylate cyclase alterations during the postnatal development of skeletal muscle.
    Smith PB; Clark GF
    Biochim Biophys Acta; 1980 Dec; 633(2):274-88. PubMed ID: 6257311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of adenylate cyclase-coupled beta-adrenergic receptors in the developing mammalian palate.
    Garbarino MP; Greene RM
    Biochem Biophys Res Commun; 1984 Feb; 119(1):193-202. PubMed ID: 6322774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. beta-Adrenergic receptors in the developing rabbit lung.
    Whitsett JA; Manton MA; Darovec-Beckerman C; Adams KG; Moore JJ
    Am J Physiol; 1981 Apr; 240(4):E351-7. PubMed ID: 6261584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenylethanolaminotetralines compete with [3H]dihydroalprenolol binding to rat colon membranes without evidencing atypical beta-adrenergic sites.
    Landi M; Bianchetti A; Croci T; Manara L
    Biochem Pharmacol; 1992 Aug; 44(4):665-72. PubMed ID: 1354964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dithiothreitol on the beta-adrenergic receptor of S49 wild type and cyc- lymphoma cells: decreased affinity of the ligand-receptor interaction.
    Clark RB; Green DA; Rashidbaigi A; Ruoho A
    J Cyclic Nucleotide Protein Phosphor Res; 1983; 9(3):203-20. PubMed ID: 6321573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between the (--)-[3H]-dihydroalprenolol binding to beta-adrenoceptors and transmembrane 86Rb efflux of the BC3H1 nonfusing muscle cell line.
    Mauger JP; Worcel M
    Br J Pharmacol; 1980 Apr; 68(4):731-9. PubMed ID: 6103725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-co-ordinate development of beta-adrenergic receptors and adenylate cyclase in chick heart.
    Alexander RW; Galper JB; Neer EJ; Smith TW
    Biochem J; 1982 Jun; 204(3):825-30. PubMed ID: 6289805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a second desensitized state of beta-adrenergic receptor with low affinity for beta-antagonists and normal reactivity towards beta-agonists in adipocyte membranes previously exposed to beta-antagonists.
    Giudicelli Y; Lacasa D; Agli B
    Eur J Biochem; 1979 Sep; 99(3):457-62. PubMed ID: 227682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogenetic development of isoproterenol subsensitivity of myocardial adenylate cyclase and beta-adrenergic receptors in spontaneously hypertensive rats.
    Bhalla RC; Sharma RV; Ramanathan S
    Biochim Biophys Acta; 1980 Nov; 632(4):497-506. PubMed ID: 6254574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lisuride hydrogen maleate: an ergoline with beta-adrenergic antagonist activity.
    Cote T; Munemura M; Kebabian J
    Eur J Pharmacol; 1979 Nov; 59(3-4):303-6. PubMed ID: 43258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of phospholipases C on the beta-receptor-adenylate cyclase system of chick erythrocyte membranes.
    Nakajima M; Taguchi R; Ikezawa H
    Biochem Pharmacol; 1986 Sep; 35(18):3031-8. PubMed ID: 2875718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guanosine triphosphate: an endogenous compound in the rabbit cerebellar cortex which couples the beta-adrenergic receptor to adenylate cyclase.
    Cote TE; Chen TC; Kebabian JW
    Brain Res; 1980 Jan; 181(1):127-38. PubMed ID: 6243221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.