BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6133674)

  • 1. Thyroxine levels and antler growth in white-tailed deer.
    Brown RD; Chao CC; Faulkner LW
    Comp Biochem Physiol A Comp Physiol; 1983; 75(1):71-5. PubMed ID: 6133674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hormone levels and antler development in white-tailed and sika fawns.
    Brown RD; Chao CC; Faulkner LW
    Comp Biochem Physiol A Comp Physiol; 1983; 75(3):385-90. PubMed ID: 6136372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The endocrine control of the initiation and growth of antlers in white-tailed deer.
    Brown RD; Chao CC; Faulkner LW
    Acta Endocrinol (Copenh); 1983 May; 103(1):138-44. PubMed ID: 6858547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pinealectomy on seasonal androgen titers, antler growth and feed intake in white-tailed deer.
    Brown RD; Cowan RL; Kavanaugh JF
    J Anim Sci; 1978 Aug; 47(2):435-40. PubMed ID: 730621
    [No Abstract]   [Full Text] [Related]  

  • 5. Seasonal levels of serum parathyroid hormone, calcitonin and alkaline phosphatase in relation to antler cycles in white-tailed deer.
    Chao CC; Brown RD; Deftos LJ
    Acta Endocrinol (Copenh); 1984 Jun; 106(2):234-40. PubMed ID: 6730858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circulating levels of 1,25 dihydroxyvitamin D, alkaline phosphatase, hydroxyproline, and osteocalcin associated with antler growth in white-tailed deer.
    Van der Eems KL; Brown RD; Gundberg CM
    Acta Endocrinol (Copenh); 1988 Jul; 118(3):407-14. PubMed ID: 3260707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing antler, a model for endocrine regulation of bone growth. Concentration gradient of T3, T4, and alkaline phosphatase in the antler, jugular, and the saphenous veins.
    Bubenik GA; Sempere AJ; Hamr J
    Calcif Tissue Int; 1987 Jul; 41(1):38-43. PubMed ID: 3113700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antler cycle and thermolabile and thermostable alkaline phosphatase in white-tailed deer; circannual and circadian rhythms and variation after thyroxine, dexamethasone and ACTH administration.
    Sempéré AJ; Bubenik GA; Smith JH
    Acta Endocrinol (Copenh); 1986 Jan; 111(1):133-9. PubMed ID: 3004090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of sex hormones in the growth of antler bone tissue. I: Endocrine and metabolic effects of antiandrogen therapy.
    Bubenik GA; Bubenik AB; Brown GM; Wilson DA
    J Exp Zool; 1975 Nov; 194(2):349-58. PubMed ID: 1194873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of artificial photoperiodicity and antiandrogen treatment on the antler growth and plasma levels of LH, FSH, testosterone, prolactin and alkaline phosphatase in the male white-tailed deer.
    Bubenik GA; Schams D; Coenen G
    Comp Biochem Physiol A Comp Physiol; 1987; 87(3):551-9. PubMed ID: 2887340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pinealectomy on seasonal changes in antler growth and concentrations of testosterone and prolactin in white-tailed deer.
    Snyder DL; Cowan RL; Hagen DR; Schanbacher BD
    Biol Reprod; 1983 Aug; 29(1):63-71. PubMed ID: 6615970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of androstenedione and testosterone in the reproduction and antler growth of a male white-tailed deer.
    Bubenik GA; Pomerantz DK; Schams D; Smith PS
    Acta Endocrinol (Copenh); 1987 Jan; 114(1):147-52. PubMed ID: 3811770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of antiandrogen cyproterone acetate on the development of the antler cycle in Southern pudu (Pudu puda).
    Bubenik GA; Reyes E; Schams D; Lobos A; Bartos L; Koerner F
    J Exp Zool; 2002 Mar; 292(4):393-401. PubMed ID: 11857473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hormonal regulation of reproduction and the antler cycle in the male Columbian black-tailed deer (Odocoileus hemionus columbianus). Part I. Seasonal changes in the histology of the reproductive organs, serum testosterone, sperm production, and the antler cycle.
    West NO; Nordan HC
    Can J Zool; 1976 Oct; 54(10):1617-36. PubMed ID: 974930
    [No Abstract]   [Full Text] [Related]  

  • 15. Evidence for extrarenal production of 1,25-dihydroxyvitamin during physiological bone growth: in vivo and in vitro production by deer antler cells.
    Sempere AJ; Grimberg R; Silve C; Tau C; Garabedian M
    Endocrinology; 1989 Nov; 125(5):2312-9. PubMed ID: 2791992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal variations of serum 1,25-dihydroxyvitamin D3 and alkaline phosphatase in relation to the antler formation in the fallow deer (Dama dama L.).
    Eiben B; Scharla S; Fischer K; Schmidt-Gayk H
    Acta Endocrinol (Copenh); 1984 Sep; 107(1):141-4. PubMed ID: 6548331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoperiodic control of antler cycles in deer. V. Reversed seasons.
    Goss RJ
    J Exp Zool; 1980 Jan; 211(1):101-11. PubMed ID: 7400761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histological structure of antlers in castrated male fallow deer (Dama dama).
    Kierdorf U; Kierdorf H; Schultz M; Rolf HJ
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Dec; 281(2):1352-62. PubMed ID: 15523621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated plasma IGF 1 levels in stags prevented from growing antlers.
    Suttie JM; Fennessy PF; Gluckman PD; Corson ID
    Endocrinology; 1988 Jun; 122(6):3005-7. PubMed ID: 3371270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testosterone and estradiol concentrations in serum, velvet skin, and growing antler bone of male white-tailed deer.
    Bubenik GA; Miller KV; Lister AL; Osborn DA; Bartos L; van der Kraak GJ
    J Exp Zool A Comp Exp Biol; 2005 Mar; 303(3):186-92. PubMed ID: 15726635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.