These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 6133695)

  • 1. Species variations in the sensitivity of the endoplasmic reticulum to the herbicide 1.1.1. trifluoro-N-(2-methyl-4-phenyl sulfonyl phenyl) methane sulfonamide.
    Thabrew MI; Emerole GO
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1983; 74(2):473-6. PubMed ID: 6133695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of 1.1.1 trifluoro-N-(2-methyl-4-phenyl sulfonyl) methane sulfonamide (Destun 50WP) on rat hepatic microsomal enzymes, aniline hydroxylase and amino-pyrine N-demethylase.
    Thabrew MI; Emerole GO
    Eur J Drug Metab Pharmacokinet; 1983; 8(4):321-7. PubMed ID: 6673969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variations in induction of drug-metabolizing enzymes by trans-Stilbene oxide in rodent species.
    Thabrew MI; Emerole GO
    Biochim Biophys Acta; 1983 Mar; 756(2):242-6. PubMed ID: 6830855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction and suppression of hepatic and extrahepatic microsomal foreign-compound-metabolizing enzyme systems by 2,3,7,8-tetrachlorodibenzo-p-dioxin.
    Hook GE; Haseman JK; Lucier GW
    Chem Biol Interact; 1975 Mar; 10(3):199-214. PubMed ID: 805004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of liver microsomal epoxide hydrolase, UDP-glucuronyl transferase and cytosolic glutathione transferase in different rodent species by 2-acetylaminofluorene or 3-methylcholanthrene.
    Aström A; Månér S; DePierre JW
    Xenobiotica; 1987 Feb; 17(2):155-63. PubMed ID: 3105187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of hepatic xenobiotic metabolizing enzymes of mouse, rat and guinea-pig to nickel.
    Işcan M; Coban T; Eke BC
    Pharmacol Toxicol; 1992 Dec; 71(6):434-42. PubMed ID: 1480552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of in vitro drug metabolism by lung, liver, and kidney of several common laboratory species.
    Litterst CL; Mimnaugh EG; Reagan RL; Gram TE
    Drug Metab Dispos; 1975; 3(4):259-65. PubMed ID: 240655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of rat hepatic drug metabolizing enzymes by substituted urea herbicides.
    Schoket B; Vincze I
    Acta Pharmacol Toxicol (Copenh); 1985 Apr; 56(4):283-8. PubMed ID: 3927658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo and in vitro effects of caffeine on hepatic mixed-function oxidases in rodents and chicks.
    Govindwar SP; Kachole MS; Pawar SS
    Food Chem Toxicol; 1984 May; 22(5):371-5. PubMed ID: 6539286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further studies on microsomal drug metabolizing enzyme activity and protein levels in animal models showing different susceptibilities to aflatoxicosis.
    Thabrew MI; Obasi SC; Emerole GO
    Comp Biochem Physiol C Comp Pharmacol; 1982; 73(2):289-92. PubMed ID: 6129099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and specificity of a human microsomal epoxide hydratase.
    Oesch F
    Biochem J; 1974 Apr; 139(1):77-88. PubMed ID: 4463951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The liver parenchyma and foreign compound metabolism in red-winged blackbird compared with rat.
    Pan HP; Hook GE; Fouts JR
    Xenobiotica; 1975 Jan; 5(1):17-24. PubMed ID: 1154795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium sensitivity differences between liver microsomal drug metabolizing enzyme systems of guinea-pig and rat.
    Işcan M; Karakaya A
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1988; 90(1):101-5. PubMed ID: 2904851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of strain differences and tumor presence on microsomal drug metabolism in the guinea pig: brief communication.
    Litterst CL; Mimnaugh EG; Gram TE
    J Natl Cancer Inst; 1977 Dec; 59(6):1737-9. PubMed ID: 200761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Structural-functional aspects of the postischemic recovery of the hepatocyte endoplasmic network in rats].
    Sharapov VI; Sokirchenko IA; Grek OR; Shkurupiĭ VA; Dolgov AV
    Biull Eksp Biol Med; 1986 Mar; 101(3):277-9. PubMed ID: 3955208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of cytochrome P-450 and related drug-metabolizing activities in the livers of different rodent species by 2-acetylaminofluorene or by 3-methylcholanthrene.
    Aström A; Månér S; DePierre JW
    Biochem Pharmacol; 1986 Aug; 35(16):2703-13. PubMed ID: 3488741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo effects of 3-methylcholanthrene, phenobarbital, pyrethrum and 2,4,5-T isooctylester on liver, lung and kidney microsomal mixed-function oxidase system of guinea-pig: a comparative study.
    Işcan M; Arinç E; Vural N; Işcan MY
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 77(1):177-90. PubMed ID: 6141874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The perinatal development of epoxide-metabolizing enzyme activities in liver and extrahepatic organs of guinea pig and rabbit.
    James MO; Foureman GL; Law FC; Bend JR
    Drug Metab Dispos; 1977; 5(1):19-28. PubMed ID: 13972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of amphetamine on the hepatic endoplasmic reticulum of the pregnant rat.
    Feuer G; de la Iglesia F
    Toxicology; 1977 Feb; 7(1):99-105. PubMed ID: 841587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of thiamine on the activity of liver endoplasmic reticulum enzymes metabolizing drugs].
    Sushko LI; Lukienko PI
    Farmakol Toksikol; 1979; 42(1):56-9. PubMed ID: 421893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.