These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 6133716)
1. Reductive dechlorination of chloramphenicol by rat liver microsomes. Morris PL; Burke TR; Phol LR Drug Metab Dispos; 1983; 11(2):126-30. PubMed ID: 6133716 [TBL] [Abstract][Full Text] [Related]
2. A new pathway for the oxidative metabolism of chloramphenicol by rat liver microsomes. Morris PL; Burke TR; George JW; Pohl LR Drug Metab Dispos; 1982; 10(5):439-45. PubMed ID: 6128189 [TBL] [Abstract][Full Text] [Related]
3. The oxidative metabolism of hydralazine by rat liver microsomes. LaCagnin LB; Colby HD; O'Donnell JP Drug Metab Dispos; 1986; 14(5):549-54. PubMed ID: 2876860 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of glutathione-dependent dechlorination of chloramphenicol and thiamphenicol by cytosol of rat liver. Martin JL; Gross BJ; Morris P; Pohl LR Drug Metab Dispos; 1980; 8(6):371-5. PubMed ID: 6109602 [TBL] [Abstract][Full Text] [Related]
5. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes. Ferrara R; Tolando R; King LJ; Manno M Toxicol Appl Pharmacol; 1997 Apr; 143(2):420-8. PubMed ID: 9144458 [TBL] [Abstract][Full Text] [Related]
6. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment. Hissink AM; Oudshoorn MJ; Van Ommen B; Haenen GR; Van Bladeren PJ Chem Res Toxicol; 1996 Dec; 9(8):1249-56. PubMed ID: 8951226 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of 4'-(9-acridinylamino)methanesulfon-m-anisidide by rat liver microsomes. Shoemaker DD; Cysyk RL; Gormley PE; DeSouza JJ; Malspeis L Cancer Res; 1984 May; 44(5):1939-45. PubMed ID: 6546898 [TBL] [Abstract][Full Text] [Related]
8. Bioactivation and irreversible binding of the cognition activator tacrine using human and rat liver microsomal preparations. Species difference. Woolf TF; Pool WF; Bjorge SM; Chang T; Goel OP; Purchase CF; Schroeder MC; Kunze KL; Trager WF Drug Metab Dispos; 1993; 21(5):874-82. PubMed ID: 7902251 [TBL] [Abstract][Full Text] [Related]
9. Biotransformations of daunorubicin aglycones by rat liver microsomes. Schwartz HS; Paul B Cancer Res; 1984 Jun; 44(6):2480-4. PubMed ID: 6722790 [TBL] [Abstract][Full Text] [Related]
11. Rat liver microsomal cytochrome P-450 responsible for reductive metabolism of zonisamide. Nakasa H; Komiya M; Ohmori S; Rikihisa T; Kitada M Drug Metab Dispos; 1993; 21(5):777-81. PubMed ID: 7902235 [TBL] [Abstract][Full Text] [Related]
12. Human liver microsomal reduction of pyrrolizidine alkaloid N-oxides to form the corresponding carcinogenic parent alkaloid. Wang YP; Yan J; Fu PP; Chou MW Toxicol Lett; 2005 Mar; 155(3):411-20. PubMed ID: 15649625 [TBL] [Abstract][Full Text] [Related]
13. Major isozymes of rat liver microsomal cytochrome P-450 involved in the N-oxidation of N-isopropyl-alpha-(2-methylazo)-p-toluamide, the azo derivative of procarbazine. Prough RA; Brown MI; Dannan GA; Guengerich FP Cancer Res; 1984 Feb; 44(2):543-8. PubMed ID: 6692359 [TBL] [Abstract][Full Text] [Related]
14. Biotransformation of letrozole in rat liver microsomes: effects of gender and tamoxifen. Tao X; Piao H; Canney DJ; Borenstein MR; Nnane IP J Pharm Biomed Anal; 2007 Feb; 43(3):1078-85. PubMed ID: 17045772 [TBL] [Abstract][Full Text] [Related]
15. Phase I metabolism of ganstigmine. Rat, dog, monkey and human liver microsomal extracts investigated by liquid chromatography electrospray tandem mass spectrometry. Catinella S; Pelizzi N; Puccini P; Marchetti S; Zanol M; Acerbi D; Ventura P J Mass Spectrom; 2001 Dec; 36(12):1287-93. PubMed ID: 11754120 [TBL] [Abstract][Full Text] [Related]
16. Further studies of the suicide inactivation of purified rat liver cytochrome P-450 by chloramphenicol. Halpert J Mol Pharmacol; 1982 Jan; 21(1):166-72. PubMed ID: 7132955 [TBL] [Abstract][Full Text] [Related]
17. Metabolism of 2-amino-alpha-carboline. A food-borne heterocyclic amine mutagen and carcinogen by human and rodent liver microsomes and by human cytochrome P4501A2. Raza H; King RS; Squires RB; Guengerich FP; Miller DW; Freeman JP; Lang NP; Kadlubar FF Drug Metab Dispos; 1996 Apr; 24(4):395-400. PubMed ID: 8801053 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic reduction of chloramphenicol and nitrosochloramphenicol by rat liver microsomal preparations. Lim LO; Yunis AA Pharmacology; 1983; 27(1):58-64. PubMed ID: 6611649 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of 4-nitroaniline by rat liver microsomes. Anderson MM; Mays JB; Mitchum RK; Hinson JA Drug Metab Dispos; 1984; 12(2):179-85. PubMed ID: 6144483 [TBL] [Abstract][Full Text] [Related]
20. Metabolism of paraldehyde to acetaldehyde by rat liver microsomes. Zera RT; Nagasawa HT Res Commun Chem Pathol Pharmacol; 1981 Dec; 34(3):531-41. PubMed ID: 7323448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]