These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 6133716)

  • 41. Formation and disposition of nitrosochloramphenicol in rat liver.
    Ascherl M; Eyer P; Kampffmeyer H
    Biochem Pharmacol; 1985 Oct; 34(20):3755-63. PubMed ID: 4052115
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxidative metabolism of monensin in rat liver microsomes and interactions with tiamulin and other chemotherapeutic agents: evidence for the involvement of cytochrome P-450 3A subfamily.
    Nebbia C; Ceppa L; Dacasto M; Carletti M; Nachtmann C
    Drug Metab Dispos; 1999 Sep; 27(9):1039-44. PubMed ID: 10460804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glutathione trapping to measure microsomal oxidation of furan to cis-2-butene-1,4-dial.
    Peterson LA; Cummings ME; Vu CC; Matter BA
    Drug Metab Dispos; 2005 Oct; 33(10):1453-8. PubMed ID: 16006568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of the metabolism of nitrobenzene by hepatic microsomes and cecal microflora from Fischer-344 rats in vitro and the relative importance of each in vivo.
    Levin AA; Dent JG
    Drug Metab Dispos; 1982; 10(5):450-4. PubMed ID: 6128191
    [No Abstract]   [Full Text] [Related]  

  • 45. Glutathione-dependent dechlorination of chloramphenicol by cytosol of rat liver.
    Martin JL; George JW; Pohl LR
    Drug Metab Dispos; 1980; 8(2):93-7. PubMed ID: 6103795
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reductive oxygenation of carbon tetrachloride: trichloromethylperoxyl radical as a possible intermediate in the conversion of carbon tetrachloride to electrophilic chlorine.
    Mico BA; Pohl LR
    Arch Biochem Biophys; 1983 Sep; 225(2):596-609. PubMed ID: 6625601
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biotransformation of terodiline. II. Disposition in the male rat. Identification of metabolites in rat urine and rat liver microsomes by mass spectrometry.
    Norén B; Strömberg S; Ericsson O; Vangbo B; Grälls M; Widlund L; Lindeke B
    Acta Pharm Suec; 1985; 22(3):131-46. PubMed ID: 4036638
    [No Abstract]   [Full Text] [Related]  

  • 48. The formation of chlorobenzene and benzene by the reductive metabolism of lindane in rat liver microsomes.
    Baker MT; Nelson RM; Van Dyke RA
    Arch Biochem Biophys; 1985 Feb; 236(2):506-14. PubMed ID: 2578765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reductive metabolism of 1,1,1,2-tetrachloroethane and related chloroethanes by rat liver microsomes.
    Thompson JA; Ho B; Mastovich SL
    Chem Biol Interact; 1984 Oct; 51(3):321-33. PubMed ID: 6488393
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clofibrate selectively induces azoreduction of dimethylaminoazobenzene (DAB) by rat liver microsomes.
    Levine WG; Raza H
    Adv Exp Med Biol; 1986; 197():861-70. PubMed ID: 3094343
    [No Abstract]   [Full Text] [Related]  

  • 51. Microsomal activation of constituents of white snakeroot (Eupatorium rugosum Houtt) to form toxic products.
    Beier RC; Norman JO; Irvin TR; Witzel DA
    Am J Vet Res; 1987 Apr; 48(4):583-5. PubMed ID: 3592355
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Further studies on aldosterone metabolism. The Claude P. Brown memorial lecture.
    Morris DJ
    Ann Clin Lab Sci; 1986; 16(2):94-102. PubMed ID: 3963735
    [No Abstract]   [Full Text] [Related]  

  • 53. Study of the mechanism of metabolic activation of chloramphenicol by rat liver microsomes.
    Pohl LR; Krishna G
    Biochem Pharmacol; 1978 Feb; 27(3):335-41. PubMed ID: 619915
    [No Abstract]   [Full Text] [Related]  

  • 54. Inter-species comparison of microsomal reductive transformation of biologically active benfluron N-oxide.
    Skálová L; Nobilis M; Szotáková B; Wsól V; Kvasnicková E
    Drug Metabol Drug Interact; 1998; 14(4):235-50. PubMed ID: 10694931
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Nature of the free-radical states in microsomes].
    Raĭkhman LM; Annaev BB
    Biofizika; 1971; 16(6):1135-7. PubMed ID: 4399898
    [No Abstract]   [Full Text] [Related]  

  • 56. A new lidocaine metabolite, omega-diethylamino-2-hydroxymethyl-6-methylacetanilide.
    Kawai R; Fujita S; Suzuki T
    Drug Metab Dispos; 1986; 14(2):277-9. PubMed ID: 2870907
    [No Abstract]   [Full Text] [Related]  

  • 57. Production of superoxide anion radicals during the oxidative metabolism of amino-chloramphenicol.
    Teo S; Pohl L; Halpert J
    Biochem Pharmacol; 1986 Dec; 35(24):4584-6. PubMed ID: 3024657
    [No Abstract]   [Full Text] [Related]  

  • 58. Enzymatic reduction of an epoxysuccinic acid derivative by rat cecal microflora.
    Fukushima K; Arai M; Suwa T; Satoh T
    Drug Metab Dispos; 1990; 18(2):264-6. PubMed ID: 1971584
    [No Abstract]   [Full Text] [Related]  

  • 59. Formation of 2-sulphamoylacetylphenol from zonisamide under aerobic conditions in rat liver microsomes.
    Nakasa H; Ohmori S; Kitada M
    Xenobiotica; 1996 May; 26(5):495-501. PubMed ID: 8736061
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Induction of chloramphenicol metabolism by phenobarbital.
    Palmer DL; Despopoulos A; Rael ED
    Antimicrob Agents Chemother; 1972 Feb; 1(2):112-5. PubMed ID: 4680801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.