These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 6133718)
1. Characterization of cimetidine, ranitidine, and related structures' interaction with cytochrome P-450. Rendić S; Kajfez F; Ruf HH Drug Metab Dispos; 1983; 11(2):137-42. PubMed ID: 6133718 [TBL] [Abstract][Full Text] [Related]
2. Drug metabolism by rat and human hepatic microsomes in response to interaction with H2-receptor antagonists. Knodell RG; Holtzman JL; Crankshaw DL; Steele NM; Stanley LN Gastroenterology; 1982 Jan; 82(1):84-8. PubMed ID: 6118314 [TBL] [Abstract][Full Text] [Related]
5. Cimetidine and ranitidine: their interaction with human and pig liver microsomes and with purified cytochrome P-450. Rendić S; Ruf HH; Weber P; Kajfez F Eur J Drug Metab Pharmacokinet; 1984; 9(3):195-200. PubMed ID: 6097454 [TBL] [Abstract][Full Text] [Related]
6. Effects of cimetidine and ranitidine on trimethadione metabolism in the rat. Tanaka E; Misawa S Res Commun Chem Pathol Pharmacol; 1985 Mar; 47(3):461-4. PubMed ID: 3992022 [TBL] [Abstract][Full Text] [Related]
7. [Comparison of the effects of cimetidine and ranitidine in vivo and in vitro on the hepatic microsomal enzyme system in rats]. Mavier P; Préaux AM; Delchier JC; Beauchant M; Dhumeaux D Gastroenterol Clin Biol; 1983 Mar; 7(3):244-50. PubMed ID: 6303882 [TBL] [Abstract][Full Text] [Related]
8. Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C=N(OH) bond with formation of nitrogen oxides. Jousserandot A; Boucher JL; Henry Y; Niklaus B; Clement B; Mansuy D Biochemistry; 1998 Dec; 37(49):17179-91. PubMed ID: 9860831 [TBL] [Abstract][Full Text] [Related]
9. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Mani C; Gelboin HV; Park SS; Pearce R; Parkinson A; Kupfer D Drug Metab Dispos; 1993; 21(4):645-56. PubMed ID: 8104124 [TBL] [Abstract][Full Text] [Related]
10. [Synthesis of benzofuran derivatives with H2 antagonist activity]. Leonardi A; Nava G; Nardi D Farmaco Sci; 1983 May; 38(5):290-308. PubMed ID: 6134640 [TBL] [Abstract][Full Text] [Related]
11. Role of C-5 chiral center in R-(+)-pulegone-mediated hepatotoxicity: metabolic disposition and toxicity of 5, 5-dimethyl-2-(1-Methylethylidene)-cyclohexanone in rats. Thulasiram HV; Gadad AK; Madyastha MK Drug Metab Dispos; 2000 Jul; 28(7):833-44. PubMed ID: 10859158 [TBL] [Abstract][Full Text] [Related]
12. Metabolism of 2-acetylaminofluorene by two 3-methylcholanthrene-inducible forms of rat liver cytochrome P-450. Goldstein JA; Weaver R; Sundheimer DW Cancer Res; 1984 Sep; 44(9):3768-71. PubMed ID: 6744296 [TBL] [Abstract][Full Text] [Related]
13. Effects of alpha-carbon substituents on the N-demethylation of N-methyl-2-phenethylamines by rat liver microsomes. Duncan JD; Hallström G; Paulsen-Sörman U; Lindeke B; Cho AK Drug Metab Dispos; 1983; 11(1):15-20. PubMed ID: 6132789 [TBL] [Abstract][Full Text] [Related]
14. Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats. Jeffery EH; Mannering GJ Mol Pharmacol; 1983 May; 23(3):748-57. PubMed ID: 6865917 [TBL] [Abstract][Full Text] [Related]
15. Major isozymes of rat liver microsomal cytochrome P-450 involved in the N-oxidation of N-isopropyl-alpha-(2-methylazo)-p-toluamide, the azo derivative of procarbazine. Prough RA; Brown MI; Dannan GA; Guengerich FP Cancer Res; 1984 Feb; 44(2):543-8. PubMed ID: 6692359 [TBL] [Abstract][Full Text] [Related]
16. Cytochrome P-450 and ethoxycoumarin-deethylation in rat gastric microsomes: induction by 3-methylcholanthrene and inhibition by cimetidine. Borm P; Bast A; Frankhuijzen-Sierevogel A; Noordhoek J Biochem Biophys Res Commun; 1981 Sep; 102(2):784-90. PubMed ID: 6975627 [No Abstract] [Full Text] [Related]
17. Role of rat liver cytochrome P450 3A and 2D in metabolism of imrecoxib. Xu HY; Xie ZY; Zhang P; Sun J; Chu FM; Guo ZR; Zhong DF Acta Pharmacol Sin; 2006 Mar; 27(3):372-80. PubMed ID: 16490176 [TBL] [Abstract][Full Text] [Related]
18. Comparison of imidazole- and 2-methyl imidazole-containing farnesyl-protein transferase inhibitors: interaction with and metabolism by rat hepatic cytochrome P450s. Tang C; Chiba M; Nishime J; Hochman JH; Chen I; Williams TM; Lin JH Drug Metab Dispos; 2000 Jun; 28(6):680-6. PubMed ID: 10820141 [TBL] [Abstract][Full Text] [Related]
19. Identification of structural characteristics of some potential H2-receptor antagonists that determine the interaction with rat hepatic P-450. Rekka E; Sterk GJ; Timmerman H; Bast A Chem Biol Interact; 1988; 67(1-2):117-27. PubMed ID: 2901918 [TBL] [Abstract][Full Text] [Related]
20. [Immunochemical study of catalytic activity of cytochrome P-450-LM4 from rabbit liver microsomes]. Kurchenko VP; Usanov SA; Metelitsa DI Biokhimiia; 1981 Dec; 46(12):2202-7. PubMed ID: 6797484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]