BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 6133841)

  • 1. Effects of beta-adrenergic blockade on O2 uptake during submaximal and maximal exercise.
    Tesch PA; Kaiser P
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Apr; 54(4):901-5. PubMed ID: 6133841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle glycolysis during submaximal exercise following acute beta-adrenergic blockade in man.
    Kaiser P; Tesch PA; Thorsson A; Karlsson J; Kaijser L
    Acta Physiol Scand; 1985 Mar; 123(3):285-91. PubMed ID: 2998155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. O2 extraction maintains O2 uptake during submaximal exercise with beta-adrenergic blockade at 4,300 m.
    Wolfel EE; Selland MA; Cymerman A; Brooks GA; Butterfield GE; Mazzeo RS; Grover RF; Reeves JT
    J Appl Physiol (1985); 1998 Sep; 85(3):1092-102. PubMed ID: 9729588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and Perceived Exertion Responses during Exercise: Effect of β-blockade.
    Mitchell BL; Davison K; Parfitt G; Spedding S; Eston RG
    Med Sci Sports Exerc; 2019 Apr; 51(4):782-791. PubMed ID: 30439785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-blockade reduces tidal volume during heavy exercise in trained and untrained men.
    Joyner MJ; Jilka SM; Taylor JA; Kalis JK; Nittolo J; Hicks RW; Lohman TG; Wilmore JH
    J Appl Physiol (1985); 1987 May; 62(5):1819-25. PubMed ID: 2885301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of beta-blockade on exercise capacity of trained and untrained men: a hemodynamic comparison.
    Joyner MJ; Freund BJ; Jilka SM; Hetrick GA; Martinez E; Ewy GA; Wilmore JH
    J Appl Physiol (1985); 1986 Apr; 60(4):1429-34. PubMed ID: 2871007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen uptake and plasma catecholamines during submaximal and maximal exercise after long-term beta-receptor blockade.
    Franz IW; Lohmann FW; Koch G
    Int J Sports Med; 1985 Aug; 6(4):202-6. PubMed ID: 2864323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of selective and nonselective beta-adrenergic blockade on mechanisms of exercise conditioning.
    Wolfel EE; Hiatt WR; Brammell HL; Carry MR; Ringel SP; Travis V; Horwitz LD
    Circulation; 1986 Oct; 74(4):664-74. PubMed ID: 2875812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perceived exertion and gas exchange after calcium and beta-blockade in atrial fibrillation.
    Myers J; Atwood JE; Sullivan M; Forbes S; Friis R; Pewen W; Froelicher V
    J Appl Physiol (1985); 1987 Jul; 63(1):97-104. PubMed ID: 2887542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acute beta-adrenergic blockade on blood and muscle lactate concentration during submaximal exercise.
    Kaiser P; Tesch PA
    Int J Sports Med; 1983 Nov; 4(4):275-7. PubMed ID: 6140229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of beta-adrenoceptor blockade on post-exercise oxygen consumption.
    Børsheim E; Bahr R; Hansson P; Gullestad L; Hallén J; Sejersted OM
    Metabolism; 1994 May; 43(5):565-71. PubMed ID: 7909912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. O2 consumption during exercise in dogs--roles of splenic contraction and alpha-adrenergic vasoconstriction.
    Longhurst JC; Musch TI; Ordway GA
    Am J Physiol; 1986 Sep; 251(3 Pt 2):H502-9. PubMed ID: 2875657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical performance and muscle metabolism during beta-adrenergic blockade in man.
    Kaiser P
    Acta Physiol Scand Suppl; 1984; 536():1-53. PubMed ID: 6151777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise gas exchange in asthmatics after beta-adrenergic blockade.
    Sue DY; Van Meter LR; Hansen JE; Wasserman K
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Aug; 55(2):529-33. PubMed ID: 6137468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dual beta-blockade and calcium antagonism on endurance performance.
    Gordon NF; van Rensburg JP; van den Heever DP; Kalliatakis NB; Myburgh DP
    Med Sci Sports Exerc; 1987 Feb; 19(1):1-6. PubMed ID: 2881183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-adrenergic blockade and training in healthy men--effects on central circulation.
    Svedenhag J; Henriksson J; Juhlin-Dannfelt A; Asano K
    Acta Physiol Scand; 1984 Jan; 120(1):77-86. PubMed ID: 6144241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propranolol does not impair exercise oxygen uptake in normal men at high altitude.
    Moore LG; Cymerman A; Huang SY; McCullough RE; McCullough RG; Rock PB; Young A; Young PM; Bloedow D; Weil JV
    J Appl Physiol (1985); 1986 Nov; 61(5):1935-41. PubMed ID: 3023276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of beta-adrenergic blockade on exercise performance in patients with chronic atrial fibrillation.
    Atwood JE; Sullivan M; Forbes S; Myers J; Pewen W; Olson HG; Froelicher VF
    J Am Coll Cardiol; 1987 Aug; 10(2):314-20. PubMed ID: 2885354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Left ventricular oxygen extraction during submaximal and maximal exertion in ponies.
    Manohar M
    J Physiol; 1988 Oct; 404():547-56. PubMed ID: 3150987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of beta-blockade on the drift in O2 consumption during prolonged exercise.
    Kalis JK; Freund BJ; Joyner MJ; Jilka SM; Nittolo J; Wilmore JH
    J Appl Physiol (1985); 1988 Feb; 64(2):753-8. PubMed ID: 3372432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.