These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 6133903)
1. Effects of acetazolamide on iodide transport, electrolyte distribution and activities of carbonic anhydrase, Na+, K+-ATPase and HCO3- -ATPase in mouse, rat and turtle thyroid glands. Chow SY; Kemp JW; Woodbury DM J Endocrinol; 1983 May; 97(2):167-74. PubMed ID: 6133903 [TBL] [Abstract][Full Text] [Related]
2. Correlation of iodide transport with Na + ,K+ ATPase, HCO3-ATPase and carbonic anhydrase activities in different functional states of the rat thyroid gland. Chow SY; Kemp JW; Woodbury DM J Endocrinol; 1982 Mar; 92(3):371-9. PubMed ID: 6121835 [TBL] [Abstract][Full Text] [Related]
3. Effects of acute and chronic phenytoin on the electrolyte content and the activities of Na+, K+-, Ca2+, Mg2+-, and HCO3- -ATPases and carbonic anhydrase of neonatal and adult rat cerebral cortex. White HS; Chen CF; Kemp JW; Woodbury DM Epilepsia; 1985; 26(1):43-57. PubMed ID: 2982596 [TBL] [Abstract][Full Text] [Related]
4. Role of carbonic anhydrase in thyroidal iodide transport. Chow SY; Kemp JW; Woodbury DM Ann N Y Acad Sci; 1984; 429():604-6. PubMed ID: 6430198 [No Abstract] [Full Text] [Related]
5. Relation between pH regulation and iodide transport in turtle thyroid glands. Chow SY; Woodbury DM; Yen-Chow YC J Endocrinol; 1990 Oct; 127(1):85-101. PubMed ID: 2129434 [TBL] [Abstract][Full Text] [Related]
6. Effects of sodium on iodide transport in primary cultures of turtle thyroid cells. Chow SY; Yen-Chow YC; White HS; Woodbury DM Am J Physiol; 1986 Apr; 250(4 Pt 1):E464-9. PubMed ID: 3008570 [TBL] [Abstract][Full Text] [Related]
7. Effects of 4,4'-di-isothiocyano-2,2'-stilbene disulphonate on iodide uptake by primary cultures of turtle thyroid follicular cells. Chow SY; Yen-Chow YC; White HS; Woodbury DM J Endocrinol; 1987 Jun; 113(3):403-12. PubMed ID: 2442278 [TBL] [Abstract][Full Text] [Related]
8. Effects of hyper- and hypothyroidism on carbonic anhydrase, Mg2(+)-dependent ATPase and Mg2(+)-dependent, HCO3(-)-stimulated ATPase activities of rat duodenal mucosa and kidney cortex. Suzuki S; Chen H; Takahashi T; Niwa O J Endocrinol; 1990 Jul; 126(1):119-29. PubMed ID: 2143214 [TBL] [Abstract][Full Text] [Related]
9. Cl(-)/HCO(3)(-) exchange is acetazolamide sensitive and activated by a muscarinic receptor-induced [Ca(2+)](i) increase in salivary acinar cells. Nguyen HV; Stuart-Tilley A; Alper SL; Melvin JE Am J Physiol Gastrointest Liver Physiol; 2004 Feb; 286(2):G312-20. PubMed ID: 12958022 [TBL] [Abstract][Full Text] [Related]
10. Carbonic anhydrase, Mg2+-HCO-3-ATPase and Mg2+-Na+-K+-ATPase in rat intestinal mucosa: effects of adrenalectomy and aldosterone administration. Suzuki S J Steroid Biochem; 1981 May; 14(5):449-56. PubMed ID: 6117675 [No Abstract] [Full Text] [Related]
11. Rates of ion movement from plasma to endolymph in the dogfish. Maren TH; Swenson ER; Addink AD Ann Otol Rhinol Laryngol; 1975; 84(6):847-58. PubMed ID: 233717 [TBL] [Abstract][Full Text] [Related]
12. Possible role of carbonic anhydrase, V-H(+)-ATPase, and Cl(-)/HCO3- exchanger in electrogenic ion transport across the gills of the euryhaline crab Chasmagnathus granulatus. Genovese G; Ortiz N; Urcola MR; Luquet CM Comp Biochem Physiol A Mol Integr Physiol; 2005 Nov; 142(3):362-9. PubMed ID: 16194616 [TBL] [Abstract][Full Text] [Related]
13. Effects of thyrotropin, acetazolamide, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid, perchlorate, and ouabain on the distribution of iodide ion in cells and luminal fluid of turtle thyroid. Chow SY; Yen-Chow YC; Woodbury DM Endocrinology; 1982 Jan; 110(1):121-5. PubMed ID: 6274614 [No Abstract] [Full Text] [Related]
14. Tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta 1 (TGF-beta 1) inhibit the expression and activity of Na+/K(+)-ATPase in FRTL-5 rat thyroid cells. Pekary AE; Levin SR; Johnson DG; Berg L; Hershman JM J Interferon Cytokine Res; 1997 Apr; 17(4):185-95. PubMed ID: 9142647 [TBL] [Abstract][Full Text] [Related]
15. MEK signaling modulates sodium iodide symporter at multiple levels and in a paradoxical manner. Vadysirisack DD; Venkateswaran A; Zhang Z; Jhiang SM Endocr Relat Cancer; 2007 Jun; 14(2):421-32. PubMed ID: 17639055 [TBL] [Abstract][Full Text] [Related]
16. Branchial and renal (Na+/K+) ATPase and carbonic anhydrase activities in a eurythermal freshwater teleost, Carassius auratus L. Houston AH; Mearow KM Comp Biochem Physiol A Comp Physiol; 1982; 71(2):175-80. PubMed ID: 6121644 [TBL] [Abstract][Full Text] [Related]
17. Functional role of carbonic anhydrase in intestinal electrolyte transport. Charney AN; Wagner JD; Birnbaum GJ; Johnstone JN Am J Physiol; 1986 Nov; 251(5 Pt 1):G682-7. PubMed ID: 3096148 [TBL] [Abstract][Full Text] [Related]
18. Some properties of thyroidal membrane adenosinetriphosphatase and iodide uptake: effects of basic polyamino acids. Kawada J; Yoshimura Y; Minami T Endocrinol Jpn; 1976 Jun; 23(3):221-5. PubMed ID: 136343 [TBL] [Abstract][Full Text] [Related]
19. Propranolol has direct antithyroid activity: inhibition of iodide transport in cultured thyroid follicles. Murakami S; Nasu M; Fukayama H; Krishnan L; Sugawara M Cell Biochem Funct; 1993 Sep; 11(3):159-65. PubMed ID: 8104735 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen peroxide inhibits iodide influx and enhances iodide efflux in cultured FRTL-5 rat thyroid cells. Sugawara M; Yamaguchi DT; Lee HY; Yanagisawa K; Murakami S; Summer CN; Johnson DG; Levin SR Acta Endocrinol (Copenh); 1990 May; 122(5):610-6. PubMed ID: 2162123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]