BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 6134741)

  • 1. Influence of growth conditions on the composition of the plasma membrane from yeast and on kinetic properties of two membrane functions.
    Stadtlander K; Rade S; Ahlers J
    J Cell Biochem; 1982; 20(4):369-80. PubMed ID: 6134741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of phospholipid fatty acid composition of plasma membrane on sensitivity of plasma membrane ATPase of a self-flocculating yeast to in vivo ethanol activation and its relationship to ethanol tolerance.
    Hu CK; Bai FW; An LJ
    Sheng Wu Gong Cheng Xue Bao; 2004 Sep; 20(5):784-9. PubMed ID: 15974010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-protein interactions in membranes: effect of lipid composition on mobility of spin-labeled cysteine residues in yeast plasma membrane.
    Esfahani M; Solomon DJ; Mele L; Teter MN
    J Supramol Struct; 1979; 10(3):277-86. PubMed ID: 226805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane lipids and enzymes of cultured high- and low-metastatic B16 melanoma variants.
    Schroeder F; Gardiner JM
    Cancer Res; 1984 Aug; 44(8):3262-9. PubMed ID: 6146400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of ethanol and specific growth rate on the lipid content and composition of Saccharomyces cerevisiae grown anaerobically in a chemostat.
    Arneborg N; Høy CE; Jørgensen OB
    Yeast; 1995 Aug; 11(10):953-9. PubMed ID: 8533470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources.
    Tuller G; Nemec T; Hrastnik C; Daum G
    Yeast; 1999 Oct; 15(14):1555-64. PubMed ID: 10514572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the composition and peroxidation of yeast membrane lipids during ethanol stress.
    Gupta S; Sharma SC; Singh B
    Acta Microbiol Immunol Hung; 1994; 41(2):197-204. PubMed ID: 7804723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of phosphatidylethanolamine-less strain of Saccharomyces cerevisiae. Effect on amino acid transport.
    Robl I; Grassl R; Tanner W; Opekarová M
    Yeast; 2001 Feb; 18(3):251-60. PubMed ID: 11180458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in lipid composition of hepatocyte plasma membrane induced by overfeeding in duck.
    Molee W; Bouillier-Oudot M; Auvergne A; Babilé R
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Aug; 141(4):437-44. PubMed ID: 15964231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The activity of plasma membrane H(+)-ATPase is strongly stimulated during Saccharomyces cerevisiae adaptation to growth under high copper stress, accompanying intracellular acidification.
    Fernandes AR; Sá-Correia I
    Yeast; 2001 Apr; 18(6):511-21. PubMed ID: 11284007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of flocculence of a self-flocculating yeast on its tolerance to ethanol and the mechanism].
    Hu CK; Bai FW; An LJ
    Sheng Wu Gong Cheng Xue Bao; 2005 Jan; 21(1):123-8. PubMed ID: 15859341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A
    Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: cell lipid composition, membrane integrity, viability and fermentative activity.
    Mannazzu I; Angelozzi D; Belviso S; Budroni M; Farris GA; Goffrini P; Lodi T; Marzona M; Bardi L
    Int J Food Microbiol; 2008 Jan; 121(1):84-91. PubMed ID: 18055051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in fatty acyl composition can selectively affect amino acid transport in Saccharomyces cerevisiae.
    Mishra P; Prasad R
    Biochem Int; 1987 Sep; 15(3):499-508. PubMed ID: 3122760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on membrane ATPase activity and lipid level in vibrio el tor under normal and nitrofurantoin resistant conditions.
    Gosh S; Chatterjee K; Haldar S; Banerjee D; Tiwari R; Chatterjee GC
    Acta Microbiol Pol; 1981; 30(3):231-8. PubMed ID: 6174024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for altered ion transport in Saccharomyces cerevisiae overexpressing human MDR 1 protein.
    Fritz F; Howard EM; Hoffman MM; Roepe PD
    Biochemistry; 1999 Mar; 38(13):4214-26. PubMed ID: 10194338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess.
    Quartacci MF; Cosi E; Navari-Izzo F
    J Exp Bot; 2001 Jan; 52(354):77-84. PubMed ID: 11181715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molasses induced changes in Saccharomyces cerevisiae: alterations in plasma membrane structure and function and metallothionein level.
    Bhatnagar NB
    Biochem Int; 1990 Nov; 22(4):781-90. PubMed ID: 2127672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of supplementation of saturated alkanes on the membrane properties of Microsporum gypseum.
    Vaidya S; Khuller GK
    Indian J Biochem Biophys; 1989 Apr; 26(2):98-103. PubMed ID: 2777326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological and therapeutic potential of membrane lipid modification in tumors.
    Spector AA; Burns CP
    Cancer Res; 1987 Sep; 47(17):4529-37. PubMed ID: 3304617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.