BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 6135980)

  • 1. Glutamine metabolism in bone.
    Biltz RM; Letteri JM; Pellegrino ED; Palekar A; Pinkus LM
    Miner Electrolyte Metab; 1983; 9(3):125-31. PubMed ID: 6135980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamine and glutamate metabolism in normal and heat shock conditions in Drosophila Kc cells: conditions supporting glutamine synthesis maximize heat shock polypeptide expression.
    Sanders MM; Kon C
    J Cell Physiol; 1992 Mar; 150(3):620-31. PubMed ID: 1347046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximal activity of phosphate-dependent glutaminase and glutamine metabolism in septic rats.
    Ardawi MS; Majzoub MF; Kateilah SM; Newsholme EA
    J Lab Clin Med; 1991 Jul; 118(1):26-32. PubMed ID: 2066639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamine metabolism in isolated perfused rat liver. The transamination pathway.
    Häussinger D; Stehle T; Gerok W
    Biol Chem Hoppe Seyler; 1985 Jun; 366(6):527-36. PubMed ID: 2862885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of rat renal phosphate-dependent glutaminase with 6-diazo-5-oxo-L-norleucine. Evidence for interaction at the glutamine binding site.
    Shapiro RA; Clark VM; Curthoys NP
    J Biol Chem; 1979 Apr; 254(8):2835-8. PubMed ID: 429321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamine synthetase and glutaminase activities in various hepatoma cells.
    Matsuno T; Hirai H
    Biochem Int; 1989 Aug; 19(2):219-25. PubMed ID: 2573354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inhibition by 6-diazo-5-oxo-l-norleucine of glutamine catabolism of the cultured human lymphoblast.
    Willis RC; Seegmiller JE
    J Cell Physiol; 1977 Dec; 93(3):375-82. PubMed ID: 22551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma.
    Matsuno T; Goto I
    Cancer Res; 1992 Mar; 52(5):1192-4. PubMed ID: 1346587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative role of the glutaminase, glutamate dehydrogenase, and AMP-deaminase pathways in hepatic ureagenesis: studies with 15N.
    Nissim I; Cattano C; Nissim I; Yudkoff M
    Arch Biochem Biophys; 1992 Feb; 292(2):393-401. PubMed ID: 1346240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of glutamine metabolism by the antiepileptic drug, sodium valproate, in isolated dog kidney tubules.
    Martin G; Michoudet C; Baverel G
    Biochem Pharmacol; 1989 Nov; 38(22):3947-52. PubMed ID: 2574576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of large neutral amino acid-induced release of preloaded L-glutamine from rat cerebral capillaries in vitro: effects of ammonia, hepatic encephalopathy, and gamma-glutamyl transpeptidase inhibitors.
    Hilgier W; Puka M; Albrecht J
    J Neurosci Res; 1992 Jun; 32(2):221-6. PubMed ID: 1357187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of glutamate metabolism in ammonia formation by rat kidney mitochondria.
    Schoolwerth AC; Nazar BL; Lanoue KF
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():265-72. PubMed ID: 616365
    [No Abstract]   [Full Text] [Related]  

  • 13. Glutamate production in islets of Langerhans: properties of phosphate-activated glutaminase.
    Michalik M; Nelson J; Erecińska M
    Metabolism; 1992 Dec; 41(12):1319-26. PubMed ID: 1361022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the antiepileptic drug sodium valproate on glutamine and glutamate metabolism in isolated human kidney tubules.
    Martin G; Durozard D; Besson J; Baverel G
    Biochim Biophys Acta; 1990 Mar; 1033(3):261-6. PubMed ID: 2107874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent interaction of L-2-amino-4-oxo-5-chloropentanoic acid with rat renal phosphate-dependent glutaminase. Evidence for a specific glutamate binding site and of subunit heterogeneity.
    Shapiro RA; Clark VM; Curthoys NP
    J Biol Chem; 1978 Oct; 253(19):7086-90. PubMed ID: 690141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal glutamine utilization: glutamine/glutamate homeostasis in synaptosomes.
    Erecińska M; Zaleska MM; Nelson D; Nissim I; Yudkoff M
    J Neurochem; 1990 Jun; 54(6):2057-69. PubMed ID: 1971010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cyclocreatine feeding on levels of amino acids in rat hearts before and after an ischemic episode.
    Osbakken M; Zhang DN; Nelson D; Erecińska M
    Am J Physiol; 1991 Dec; 261(6 Pt 2):H1919-26. PubMed ID: 1684269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathways and regulation of ammoniagenesis by the LLC-PK1 cells in culture.
    Sahai A; Cole LA; Tannen RL
    J Lab Clin Med; 1989 Sep; 114(3):285-93. PubMed ID: 2570115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Acinetobacter glutaminase-asparaginase treatment on free amino acids in mouse tissues.
    Holcenberg JS; Tang E; Dolowy WC
    Cancer Res; 1975 May; 35(5):1320-5. PubMed ID: 1091350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamine metabolism in skeletal muscles from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus).
    Wu GY; Thompson JR; Baracos VE
    Biochem J; 1991 Mar; 274 ( Pt 3)(Pt 3):769-74. PubMed ID: 2012604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.