These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 6136008)
41. Role of cyclic AMP in rat aortic microsomal phosphorylation and calcium uptake. Bhalla RC; Webb RC; Singh D; Brock T Am J Physiol; 1978 May; 234(5):H508-14. PubMed ID: 206157 [TBL] [Abstract][Full Text] [Related]
42. Regulation by secretin, vasoactive intestinal peptide, and somatostatin of cyclic AMP accumulation in cultured brain cells. van Calker D; Müller M; Hamprecht B Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6907-11. PubMed ID: 6109286 [TBL] [Abstract][Full Text] [Related]
43. Activation of adenylate cyclase by human recombinant sst5 receptors expressed in CHO-K1 cells and involvement of Galphas proteins. Carruthers AM; Warner AJ; Michel AD; Feniuk W; Humphrey PP Br J Pharmacol; 1999 Mar; 126(5):1221-9. PubMed ID: 10205012 [TBL] [Abstract][Full Text] [Related]
44. Somatostatin-induced control of cytosolic free calcium in pituitary tumour cells. Petrucci C; Cervia D; Buzzi M; Biondi C; Bagnoli P Br J Pharmacol; 2000 Feb; 129(3):471-84. PubMed ID: 10711345 [TBL] [Abstract][Full Text] [Related]
45. Substance P potentiates calcium channel modulation by somatostatin in chick sympathetic ganglia. Golard A; Role L; Siegelbaum SA J Neurophysiol; 1994 Dec; 72(6):2683-90. PubMed ID: 7534825 [TBL] [Abstract][Full Text] [Related]
46. Na+,K(+)-ATPase phosphorylation in the choroid plexus: synergistic regulation by serotonin/protein kinase C and isoproterenol/cAMP-PK/PP-1 pathways. Fisone G; Snyder GL; Aperia A; Greengard P Mol Med; 1998 Apr; 4(4):258-65. PubMed ID: 9606178 [TBL] [Abstract][Full Text] [Related]
47. The effect of retinoic acid on cyclic-AMP-binding proteins in mouse melanoma cells. Rogelj S; Loewy B; Niles RM Eur J Biochem; 1984 Mar; 139(2):351-7. PubMed ID: 6698018 [TBL] [Abstract][Full Text] [Related]
48. Endogenous substrate proteins for Ca2+-calmodulin-dependent, Ca2+-phospholipid-dependent and cyclic AMP-dependent protein kinases in mouse pancreatic islets. Thams P; Capito K; Hedeskov CJ Biochem J; 1984 Jul; 221(1):247-53. PubMed ID: 6087803 [TBL] [Abstract][Full Text] [Related]
49. Cytosolic free-calcium concentrations in normal pancreatic islet cells. Effect of secretagogues and somatostatin. Sussman KE; Leitner JW; Draznin B Diabetes; 1987 May; 36(5):571-7. PubMed ID: 2883056 [TBL] [Abstract][Full Text] [Related]
50. A1 adenosine receptor inhibition of cyclic AMP formation and radioligand binding in the guinea-pig cerebral cortex. Alexander SP; Curtis AR; Kendall DA; Hill SJ Br J Pharmacol; 1994 Dec; 113(4):1501-7. PubMed ID: 7889308 [TBL] [Abstract][Full Text] [Related]
51. Adenylate cyclase activation is not sufficient to stimulate somatostatin release from dispersed cerebral cortical and diencephalic cells in glia-free cultures. Tapia-Arancibia L; Pares-Herbute N; Astier H; Reichlin S; Nathanson J Brain Res; 1988 May; 450(1-2):101-10. PubMed ID: 2456821 [TBL] [Abstract][Full Text] [Related]
52. Distribution and properties of protein kinase and protein phosphatase activities in synaptosomal plasma membranes and synaptic junctions. Thérien HM; Mushynski WE Biochim Biophys Acta; 1979 Jun; 585(2):188-200. PubMed ID: 222346 [TBL] [Abstract][Full Text] [Related]
53. Determination of calcium transport and phosphoprotein phosphatase activity in microsomes from respiratory and vascular smooth muscle. Sands H; Mascali J; Paietta E Biochim Biophys Acta; 1977 Dec; 500(2):223-34. PubMed ID: 201293 [TBL] [Abstract][Full Text] [Related]
54. Cerebroventricular administration of somatostatin (SRIF): effect on central levels of cyclic AMP. Herchl R; Havlicek V; Rezek M; Kroeger E Life Sci; 1977 Mar; 20(5):821-6. PubMed ID: 15714766 [No Abstract] [Full Text] [Related]
55. Partial characterization of cyclic AMP-dependent protein kinases in guinea-pig lung employing the synthetic heptapeptide substrate, kemptide. In vitro sensitivity of the soluble enzyme to isoprenaline, forskolin, methacholine and leukotriene D4. Giembycz MA; Diamond J Biochem Pharmacol; 1990 Apr; 39(8):1297-312. PubMed ID: 2157448 [TBL] [Abstract][Full Text] [Related]
56. Calcineurin is a calcium ion-dependent, calmodulin-stimulated protein phosphatase. Tonks NK; Cohen P Biochim Biophys Acta; 1983 Sep; 747(1-2):191-3. PubMed ID: 6309241 [TBL] [Abstract][Full Text] [Related]
57. Inhibition of the Mg(II).ATP-dependent phosphoprotein phosphatase by the regulatory subunit of cAMP-dependent protein kinase. Jurgensen SR; Chock PB; Taylor S; Vandenheede JR; Merlevede W Proc Natl Acad Sci U S A; 1985 Nov; 82(22):7565-9. PubMed ID: 2999770 [TBL] [Abstract][Full Text] [Related]
58. A nitric oxide/cyclic GMP-dependent protein kinase pathway alters transmitter release and inhibition by somatostatin at a site downstream of calcium entry. Gray DB; Polo-Parada L; Pilar GR; Eang P; Metzger RR; Klann E; Meriney SD J Neurochem; 1999 May; 72(5):1981-90. PubMed ID: 10217275 [TBL] [Abstract][Full Text] [Related]
59. Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function". Nestler EJ Brain Res; 2016 Aug; 1645():71-4. PubMed ID: 26740398 [TBL] [Abstract][Full Text] [Related]
60. Modulation of hypothalamic NMDA receptor function by cyclic AMP-dependent protein kinase and phosphatases. Nijholt I; Blank T; Liu A; Kügler H; Spiess J J Neurochem; 2000 Aug; 75(2):749-54. PubMed ID: 10899951 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]