These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 6136043)

  • 1. Epithelial transport parameters: an analysis of experimental strategies.
    Ferreira HG; Ferreira KT
    Proc R Soc Lond B Biol Sci; 1983 Jun; 218(1212):309-29. PubMed ID: 6136043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium transport by rabbit descending colon, in vitro.
    Schultz SG
    Fed Proc; 1981 Jul; 40(9):2408-11. PubMed ID: 6265290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transepithelial Na+ transport and the intracellular fluids: a computer study.
    Civan MM; Bookman RJ
    J Membr Biol; 1982; 65(1-2):63-80. PubMed ID: 7057462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the ENa of from skin from studies of its current-voltage relationship.
    Helman SI; O'Neil RG; Fisher RS
    Am J Physiol; 1975 Oct; 229(4):947-51. PubMed ID: 1081347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limitation of resistance as a parameter by which to characterize epithelia that actively transport ions.
    Ziegler TW
    Med Hypotheses; 1979 Feb; 5(2):247-52. PubMed ID: 459977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General method for the derivation and numerical solution of epithelial transport models.
    Latta R; Clausen C; Moore LC
    J Membr Biol; 1984; 82(1):67-82. PubMed ID: 6502699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical potential profile in rabbit ileum: role of rheogenic Na transport.
    Rose RC; Nahrwold DL; Koch MJ
    Am J Physiol; 1977 Jan; 232(1):E5-12. PubMed ID: 835703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-file diffusion through K+ channels in frog skin epithelium.
    Eskesen K; Ussing HH
    J Membr Biol; 1986; 91(3):245-50. PubMed ID: 2427726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphotericin B-induced active transport of K+ and the Na+-K+ flux ratio in frog corneal epithelium.
    Candia OA; Reinach PS; Alvarez L
    Am J Physiol; 1984 Nov; 247(5 Pt 1):C454-61. PubMed ID: 6093573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active sodium transport across the epithelium of the human kidney pelvis. Part 1.
    Schütz W; Kuntz RM; Forster D; Beer VM
    J Urol; 1982 Jul; 128(1):213-6. PubMed ID: 6287044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compartmental analysis of the Na+ flux ratio with application to data on frog skin epidermis.
    Huf EG; Mikulecky DC
    J Theor Biol; 1985 Jan; 112(1):193-220. PubMed ID: 3974263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3 to 2 coupling of the Na-K pump responsible for the transepithelial Na transport in frog skin disclosed by the effect of Ba.
    Nielsen R
    Acta Physiol Scand; 1979 Oct; 107(2):189-91. PubMed ID: 316639
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of topology in bioenergetics of sodium transport in complex epithelia.
    Huf EG; Mikulecky DC
    Am J Physiol; 1986 Jun; 250(6 Pt 2):F1107-18. PubMed ID: 3717350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of apical sodium transport mechanisms in an epithelial model by network thermodynamic simulation of the effect of mucosal sodium depletion: I. Comparison of three different apical sodium permeability expressions.
    Mintz E; Thomas SR; Mikulecky DC
    J Theor Biol; 1986 Nov; 123(1):1-19. PubMed ID: 2442562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalent electrical circuit models and the study of Na transport across epithelia: nonsteady-state current-voltage relations.
    Schultz SG; Thompson SM; Suzuki Y
    Fed Proc; 1981 Aug; 40(10):2443-9. PubMed ID: 7262329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of epithelial electrolyte transport by marker ions.
    Dörge A; Rick R
    Scanning Microsc; 1990 Jun; 4(2):449-53; discussion 453-5. PubMed ID: 2402613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The behaviour of transporting epithelial cells. I. Computer analysis of a basic model.
    Lew VL; Ferreira HG; Moura T
    Proc R Soc Lond B Biol Sci; 1979 Nov; 206(1162):53-83. PubMed ID: 42070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of cellular and paracellular conductance patterns on epithelial transport and metabolism.
    Essig A
    Biophys J; 1982 May; 38(2):143-52. PubMed ID: 6284264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The two-membrane model of epithelial transport: Koefoed-Johnsen and Ussing (1958).
    Palmer LG; Andersen OS
    J Gen Physiol; 2008 Dec; 132(6):607-12. PubMed ID: 19029371
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.