These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 6136425)

  • 1. Biochemical and functional evidence for the cosecretion of multiple messengers from single and multiple compartments.
    Viveros OH; Diliberto EJ; Daniels AJ
    Fed Proc; 1983 Sep; 42(12):2923-8. PubMed ID: 6136425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secretion of newly taken up ascorbic acid by adrenomedullary chromaffin cells originates from a compartment different from the catecholamine storage vesicle.
    Daniels AJ; Dean G; Viveros OH; Diliberto EJ
    Mol Pharmacol; 1983 Mar; 23(2):437-44. PubMed ID: 6835202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic and metabolic requirements for stimulation of secretion by ouabain in bovine adrenal medullary cells.
    Pocock G
    Mol Pharmacol; 1983 May; 23(3):671-80. PubMed ID: 6408391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.
    Santodomingo J; Vay L; Camacho M; Hernández-Sanmiguel E; Fonteriz RI; Lobatón CD; Montero M; Moreno A; Alvarez J
    Eur J Neurosci; 2008 Oct; 28(7):1265-74. PubMed ID: 18973554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The adrenal chromaffin cell as a model to study the co-secretion of enkephalins and catecholamines.
    Viveros OH; Wilson SP
    J Auton Nerv Syst; 1983 Jan; 7(1):41-58. PubMed ID: 6302158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of acetylcholine receptors by endogenous cotransmitters: studies of adrenal medulla.
    Costa E; Guidotti A; Hanbauer I; Hexum T; Saiani L; Stine S; Yang HY
    Fed Proc; 1981 Feb; 40(2):160-5. PubMed ID: 6257555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphetamine-induced exocytosis of catecholamines from the cow adrenal medulla.
    Schneider FH
    J Pharmacol Exp Ther; 1972 Oct; 183(1):80-9. PubMed ID: 5080036
    [No Abstract]   [Full Text] [Related]  

  • 8. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY; Park HG; Miwa S
    Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine ultrastructure of chromaffin granules in rat adrenal medulla indicative of a vesicle-mediated secretory process.
    Crivellato E; Guidolin D; Nico B; Nussdorfer GG; Ribatti D
    Anat Embryol (Berl); 2006 Jan; 211(1):79-86. PubMed ID: 16374612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla.
    de Diego AM; Gandía L; García AG
    Acta Physiol (Oxf); 2008 Feb; 192(2):287-301. PubMed ID: 18005392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of anabasine on catecholamine secretion from the perfused rat adrenal medulla.
    Hong SP; Jeong MG; Lim DY
    J Cardiol; 2007 Dec; 50(6):351-62. PubMed ID: 18186309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linopirdine modulates calcium signaling and stimulus-secretion coupling in adrenal chromaffin cells by targeting M-type K+ channels and nicotinic acetylcholine receptors.
    Dzhura EV; He W; Currie KP
    J Pharmacol Exp Ther; 2006 Mar; 316(3):1165-74. PubMed ID: 16280412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proceedings: Release of dopamine beta-hydroxylase by the adrenal medulla.
    Viveros OH
    Acta Physiol Lat Am; 1973; 23(6):433-5. PubMed ID: 4795047
    [No Abstract]   [Full Text] [Related]  

  • 14. Influence of lobeline on catecholamine release from the isolated perfused rat adrenal gland.
    Lim DY; Kim YS; Miwa S
    Auton Neurosci; 2004 Jan; 110(1):27-35. PubMed ID: 14766322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptidergic activation of transcription and secretion in chromaffin cells. Cis and trans signaling determinants of pituitary adenylyl cyclase-activating polypeptide (PACAP).
    Taupenot L; Mahata SK; Wu H; O'Connor DT
    J Clin Invest; 1998 Feb; 101(4):863-76. PubMed ID: 9466982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion.
    Montero M; Alonso MT; Carnicero E; Cuchillo-Ibáñez I; Albillos A; García AG; García-Sancho J; Alvarez J
    Nat Cell Biol; 2000 Feb; 2(2):57-61. PubMed ID: 10655583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicompartmental secretion of ascorbate and its dual role in dopamine beta-hydroxylation.
    Diliberto EJ; Daniels AJ; Viveros OH
    Am J Clin Nutr; 1991 Dec; 54(6 Suppl):1163S-1172S. PubMed ID: 1962565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The intravesicular cocktail and its role in the regulation of exocytosis.
    Estévez-Herrera J; González-Santana A; Baz-Dávila R; Machado JD; Borges R
    J Neurochem; 2016 Jun; 137(6):897-903. PubMed ID: 26990968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexistence of peptides and putative transmitters in neurons.
    Hökfelt T; Lundberg JM; Schultzberg M; Johansson O; Ljungdahl A; Rehfeld J
    Adv Biochem Psychopharmacol; 1980; 22():1-23. PubMed ID: 6104898
    [No Abstract]   [Full Text] [Related]  

  • 20. Opiate receptors and adrenal medullary function.
    Lemaire S; Lemaire I; Dean DM; Livett BG
    Nature; 1980 Nov; 288(5788):303-4. PubMed ID: 6253829
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.