These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 6137473)
1. Glutamine and glutamate transport by Anabaena variabilis. Chapman JS; Meeks JC J Bacteriol; 1983 Oct; 156(1):122-9. PubMed ID: 6137473 [TBL] [Abstract][Full Text] [Related]
2. Effect of glutamine on growth and heterocyst differentiation in the cyanobacterium Anabaena variabilis. Thiel T; Leone M J Bacteriol; 1986 Nov; 168(2):769-74. PubMed ID: 2877968 [TBL] [Abstract][Full Text] [Related]
3. Genetic transformation of glutamine auxotrophy to prototrophy in the cyanobacterium Nostoc muscorum. Verma SK; Singh AK; Katiyar S; Singh HN Arch Microbiol; 1990; 154(4):414-6. PubMed ID: 1978772 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Salmonella typhimurium strains sensitive and resistant to methionine sulfoximine. Steimer-Veale K; Brenchley JE J Bacteriol; 1974 Sep; 119(3):848-56. PubMed ID: 4152809 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of nitrogenase-derepressed mutant strains of cyanobacterium Anabaena variabilis. Spiller H; Latorre C; Hassan ME; Shanmugam KT J Bacteriol; 1986 Feb; 165(2):412-9. PubMed ID: 2867990 [TBL] [Abstract][Full Text] [Related]
6. Glutamine synthetase and nitrogen cycling in colonies of the marine diazotrophic cyanobacteria Trichodesmium spp. Carpenter EJ; Bergman B; Dawson R; Siddiqui PJ; Söderbäck E; Capone DG Appl Environ Microbiol; 1992 Sep; 58(9):3122-9. PubMed ID: 1359837 [TBL] [Abstract][Full Text] [Related]
7. Evidence for ammonia as an inhibitor of heterocyst and nitrogenase formation in the cyanobacterium Anabaena cycadeae. Singh HN; Rai UN; Rao VV; Bagchi SN Biochem Biophys Res Commun; 1983 Feb; 111(1):180-7. PubMed ID: 6131672 [TBL] [Abstract][Full Text] [Related]
8. Formation of glutamine from [13n]ammonia, [13n]dinitrogen, and [14C]glutamate by heterocysts isolated from Anabaena cylindrica. Thomas J; Meeks JC; Wolk CP; Shaffer PW; Austin SM J Bacteriol; 1977 Mar; 129(3):1545-55. PubMed ID: 14927 [TBL] [Abstract][Full Text] [Related]
9. A common transport system for methionine, L-methionine-DL-sulfoximine (MSX), and phosphinothricin (PPT) in the diazotrophic cyanobacterium Nostoc muscorum. Singh AK; Syiem MB; Singh RS; Adhikari S; Rai AN Curr Microbiol; 2008 May; 56(5):436-41. PubMed ID: 18266032 [TBL] [Abstract][Full Text] [Related]
10. Pathways of assimilation of [13N]N2 and 13NH4+ by cyanobacteria with and without heterocysts. Meeks JC; Wolk CP; Lockau W; Schilling N; Shaffer PW; Chien WS J Bacteriol; 1978 Apr; 134(1):125-30. PubMed ID: 418057 [TBL] [Abstract][Full Text] [Related]
11. Glial and neuronal glutamate transport following glutamine synthetase inhibition. Rothstein JD; Tabakoff B Biochem Pharmacol; 1985 Jan; 34(1):73-9. PubMed ID: 2857084 [TBL] [Abstract][Full Text] [Related]
12. L-Methionine SR-sulfoximine-resistant glutamine synthetase from mutants of Salmonella typhimurium. Miller ES; Brenchley JE J Biol Chem; 1981 Nov; 256(21):11307-12. PubMed ID: 6116714 [TBL] [Abstract][Full Text] [Related]
13. Conversion of glutamic acid to glutamine by retinal glutamine synthetase. Reif-Lehrer L; Coghlin J Exp Eye Res; 1973 Nov; 17(4):321-8. PubMed ID: 4148780 [No Abstract] [Full Text] [Related]
14. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis. Hauf K; Kayumov A; Gloge F; Forchhammer K J Biol Chem; 2016 Feb; 291(7):3483-95. PubMed ID: 26635369 [TBL] [Abstract][Full Text] [Related]
15. L-methionine-SR-sulfoximine as a probe for the role of glutamine synthetase in nitrogenase switch-off by ammonia and glutamine in Rhodopseudomonas palustris. Arp DJ; Zumft WG Arch Microbiol; 1983 Jan; 134(1):17-22. PubMed ID: 6135404 [TBL] [Abstract][Full Text] [Related]
16. Regulation of glutamine synthetase activity and synthesis in free-living and symbiotic Anabaena spp. Orr J; Haselkorn R J Bacteriol; 1982 Nov; 152(2):626-35. PubMed ID: 6127334 [TBL] [Abstract][Full Text] [Related]
17. The pathways of assimilation of 13NH4+ by the cyanobacterium, Anabaena cylindrica. Meeks JC; Wolk CP; Thomas J; Lockau W; Shaffer PW; Austin SM; Chien WS; Galonsky A J Biol Chem; 1977 Nov; 252(21):7894-900. PubMed ID: 410809 [TBL] [Abstract][Full Text] [Related]
18. DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F. Chen CH; Van Baalen C; Tabita FR J Bacteriol; 1987 Mar; 169(3):1114-9. PubMed ID: 2880834 [TBL] [Abstract][Full Text] [Related]
19. Kinetic and inhibition studies of glutamine synthetase from the cyanobacterium Anabaena 7120. Orr J; Haselkorn R J Biol Chem; 1981 Dec; 256(24):13099-104. PubMed ID: 6118371 [TBL] [Abstract][Full Text] [Related]
20. Glutamine synthetase from Mycobacterium avium. Alvarez ME; McCarthy CM Can J Microbiol; 1984 Mar; 30(3):353-9. PubMed ID: 6144381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]