These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6137596)

  • 21. Lever pressing for food reward and changes in dopamine turnover and uric acid in rat caudate and nucleus accumbens studied chronically by in vivo voltammetry.
    Joseph MH; Hodges H
    J Neurosci Methods; 1990 Sep; 34(1-3):143-9. PubMed ID: 2259235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro comparison of the selectivity of electrodes for in vivo electrochemistry.
    Kovach PM; Ewing AG; Wilson RL; Wightman RM
    J Neurosci Methods; 1984 Mar; 10(3):215-27. PubMed ID: 6738110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemistry in vivo: monitoring dopamine release in the brain of the conscious, freely moving rat.
    Lane RF; Blaha CD; Hari SP
    Brain Res Bull; 1987 Jul; 19(1):19-27. PubMed ID: 3651839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon fibre micro-electrodes for concomitant in vivo electrophysiological and voltammetric measurements: no reciprocal influences.
    Crespi F; England T; Ratti E; Trist DG
    Neurosci Lett; 1995 Mar; 188(1):33-6. PubMed ID: 7540274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel carbon fiber implantation assembly for cerebral voltammetric measurements in freely moving rats.
    Louilot A; Serrano A; D'Angio M
    Physiol Behav; 1987; 41(3):227-31. PubMed ID: 3432380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of haloperidol on amphetamine-induced increases in ascorbic acid and uric acid as determined by voltammetry in vivo.
    Mueller K; Haskett C
    Pharmacol Biochem Behav; 1987 Jun; 27(2):231-4. PubMed ID: 3628437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of extracellular basal levels of serotonin in vivo using nafion-coated carbon fibre electrodes combined with differential pulse voltammetry.
    Crespi F; Martin KF; Marsden CA
    Neuroscience; 1988 Dec; 27(3):885-96. PubMed ID: 3252175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of carbon paste electrodes in vitro for simultaneous amperometric measurement of changes in oxygen and ascorbic acid concentrations in vivo.
    Lowry JP; Boutelle MG; O'Neill RD; Fillenz M
    Analyst; 1996 Jun; 121(6):761-6. PubMed ID: 8763205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensor-tissue interactions in neurochemical analysis with carbon paste electrodes in vivo.
    O'Neill RD
    Analyst; 1993 Apr; 118(4):433-8. PubMed ID: 7684207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lever pressing for food reward and in vivo voltammetry: evidence for increases in extracellular homovanillic acid, the dopamine metabolite, and uric acid in the rat caudate nucleus.
    Joseph MH; Hodges H; Gray JA
    Neuroscience; 1989; 32(1):195-201. PubMed ID: 2586749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semi-differential voltammetry with carbon fiber electrodes for in vivo determination of monoamine metabolites and ascorbic acid in rat corpus striatum.
    Cao YP; Liu GQ; Jia XM; Peng TZ
    Zhongguo Yao Li Xue Bao; 1992 May; 13(3):259-62. PubMed ID: 1279939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interference by DOPAC and ascorbate during attempts to measure drug-induced changes in neostriatal dopamine with Nafion-coated, carbon-fiber electrodes.
    Wiedemann DJ; Basse-Tomusk A; Wilson RL; Rebec GV; Wightman RM
    J Neurosci Methods; 1990 Oct; 35(1):9-18. PubMed ID: 2148961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implementation of a biocircuit implants for neurotransmitter release during neuro-stimulation.
    Ly SY; Choi Dw
    Curr Neurovasc Res; 2013 Aug; 10(3):238-46. PubMed ID: 23782097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repeated administration of high doses of amphetamine increases release of ascorbic acid in caudate but not nucleus accumbens.
    Mueller K
    Brain Res; 1989 Aug; 494(1):30-5. PubMed ID: 2765922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo voltammetry: promise and perspective.
    Stamford JA
    Brain Res; 1985 Oct; 357(2):119-35. PubMed ID: 2864988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anomalously high concentrations of brain extracellular uric acid detected with chronically implanted probes: implications for in vivo sampling techniques.
    O'Neill RD; Gonzalez-Mora JL; Boutelle MG; Ormonde DE; Lowry JP; Duff A; Fumero B; Fillenz M; Mas M
    J Neurochem; 1991 Jul; 57(1):22-9. PubMed ID: 2051164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new type of enzyme electrode: the ascorbic acid eliminator electrode.
    Nagy G; Rice ME; Adams RN
    Life Sci; 1982 Dec; 31(23):2611-6. PubMed ID: 6130453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys.
    Schwarz DA; Lebedev MA; Hanson TL; Dimitrov DF; Lehew G; Meloy J; Rajangam S; Subramanian V; Ifft PJ; Li Z; Ramakrishnan A; Tate A; Zhuang KZ; Nicolelis MA
    Nat Methods; 2014 Jun; 11(6):670-6. PubMed ID: 24776634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detailed mapping of ascorbate distribution in rat brain.
    Milby K; Oke A; Adams RN
    Neurosci Lett; 1982 Jan; 28(1):15-20. PubMed ID: 6121305
    [No Abstract]   [Full Text] [Related]  

  • 40. Differential pulse voltammetry in the anaesthetized rat: identification of ascorbic acid, catechol and indoleamine oxidation peaks in the striatum and frontal cortex.
    Brazell MP; Marsden CA
    Br J Pharmacol; 1982 Mar; 75(3):539-47. PubMed ID: 7066604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.