These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 6137971)

  • 21. Effect of biotin on the bacterial formation of glutamic acid. II. Metabolism of glucose.
    SHIIO I; OTSUKA SI; KATSUYA N
    J Biochem; 1962 Aug; 52():108-16. PubMed ID: 13911887
    [No Abstract]   [Full Text] [Related]  

  • 22. Microbial preparation of L-[15N]tyrosine and [15N]tyramine and their gas chromatographic-mass spectrometric analyses.
    Kahana ZE; Lapidot A
    Anal Biochem; 1985 Sep; 149(2):549-54. PubMed ID: 3935008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined dissolved oxygen and pH control strategy to improve the fermentative production of L-isoleucine by Brevibacterium lactofermentum.
    Peng Z; Fang J; Li J; Liu L; Du G; Chen J; Wang X; Ning J; Cai L
    Bioprocess Biosyst Eng; 2010 Mar; 33(3):339-45. PubMed ID: 19449037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular premeability of amino acids.
    SHIIO I; OTSUKA SI; TAKAHASHI M
    J Biochem; 1962 Jan; 51():56-62. PubMed ID: 13911888
    [No Abstract]   [Full Text] [Related]  

  • 25. Rapid determination of [guanidino-15N]arginine in plasma with gas chromatography--mass spectrometry: application to human metabolic studies.
    Nissim I; Yudkoff M; Terwilliger T; Segal S
    Anal Biochem; 1983 May; 131(1):75-82. PubMed ID: 6351665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A dtsR gene-disrupted mutant of Brevibacterium lactofermentum requires fatty acids for growth and efficiently produces L-glutamate in the presence of an excess of biotin.
    Kimura E; Abe C; Kawahara Y; Nakamatsu T; Tokuda H
    Biochem Biophys Res Commun; 1997 May; 234(1):157-61. PubMed ID: 9168981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel approach to the analysis of mass spectrally assayed stable isotope-labeling experiments.
    Strong JM; Upton DK; Anderson LW; Monks A; Chisena CA; Cysyk RL
    J Biol Chem; 1985 Apr; 260(7):4276-81. PubMed ID: 3980477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of 15N enrichment in multiple amino acids and urea in a single analysis by gas chromatography/mass spectrometry.
    Patterson BW; Carraro F; Wolfe RR
    Biol Mass Spectrom; 1993 Sep; 22(9):518-23. PubMed ID: 8399400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum.
    Kawahara Y; Takahashi-Fuke K; Shimizu E; Nakamatsu T; Nakamori S
    Biosci Biotechnol Biochem; 1997 Jul; 61(7):1109-12. PubMed ID: 9255973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of 15N/14N isotopic composition in individual plasma free amino acids of human adults at natural abundance by gas chromatography-combustion isotope ratio mass spectrometry.
    Metges CC; Petzke KJ
    Anal Biochem; 1997 Apr; 247(1):158-64. PubMed ID: 9126386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular permeability and extracellular formation of glutamic acid in Brevibacterium flavum.
    SHIIO I; OTSUKA SI; KATSUYA N
    J Biochem; 1963 May; 53():333-40. PubMed ID: 13988480
    [No Abstract]   [Full Text] [Related]  

  • 32. [The effects of components of the nutrient medium on the biosynthesis of lysine by the homoserine-deficient mutant Brevibacterium flavum 178].
    Murgov ID; Zaĭtseva ZM
    Prikl Biokhim Mikrobiol; 1973; 9(3):356-61. PubMed ID: 4589363
    [No Abstract]   [Full Text] [Related]  

  • 33. The utilization of 15N and phenylalanine-2-14C by wheat plants.
    Finlayson AJ; McConnell WB
    Can J Biochem; 1969 Apr; 47(4):415-8. PubMed ID: 5769088
    [No Abstract]   [Full Text] [Related]  

  • 34. [Microbial production of amino acids and metabolic regulation (author's transl)].
    Shiio I
    Seikagaku; 1978; 50(1):1-16. PubMed ID: 344813
    [No Abstract]   [Full Text] [Related]  

  • 35. Utilization of [15N]glutamate by cultured astrocytes.
    Yudkoff M; Nissim I; Hummeler K; Medow M; Pleasure D
    Biochem J; 1986 Feb; 234(1):185-92. PubMed ID: 2871831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relative role of the glutaminase, glutamate dehydrogenase, and AMP-deaminase pathways in hepatic ureagenesis: studies with 15N.
    Nissim I; Cattano C; Nissim I; Yudkoff M
    Arch Biochem Biophys; 1992 Feb; 292(2):393-401. PubMed ID: 1346240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Participation of histidine in biosynthesis of the pyrimidine moiety of thiamin in Saccharomyces cerevisiae.
    Tazuya K; Morisaki M; Yamada K; Kumaoka H
    Biochem Int; 1988 May; 16(5):955-62. PubMed ID: 3048267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 15N enrichment of ammonium, glutamine-amide and urea, measured via mass isotopomer analysis of hexamethylenetetramine.
    Yang D; Puchowicz MA; David F; Powers L; Halperin ML; Brunengraber H
    J Mass Spectrom; 1999 Nov; 34(11):1130-6. PubMed ID: 10548807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of amino acid metabolism by cultured rat kidney cells: study with 15N.
    Nissim I; States B; Yudkoff M; Segal S
    Am J Physiol; 1987 Dec; 253(6 Pt 2):F1243-52. PubMed ID: 2892418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of strain-specific genes in glutamic acid-producing Corynebacterium glutamicum ssp. lactofermentum AJ 1511.
    Nishio Y; Koseki C; Tonouchi N; Matsui K; Sugimoto S; Usuda Y
    J Gen Appl Microbiol; 2017 Jul; 63(3):157-164. PubMed ID: 28392541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.