BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6138097)

  • 1. The effect of papain upon proline and sodium transport of rat renal brush-border membrane vesicles.
    Hsu BY; Corcoran SM; Marshall CM; Segal S
    Biochim Biophys Acta; 1983 Oct; 735(1):40-52. PubMed ID: 6138097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between renal phosphate reabsorption and renal brush-border membrane transport.
    Kempson SA; Berndt TJ; Turner ST; Zimmerman D; Knox F; Dousa TP
    Am J Physiol; 1983 Feb; 244(2):R216-23. PubMed ID: 6130706
    [No Abstract]   [Full Text] [Related]  

  • 3. Sodium gradient dependence of proline and glycine uptake in rat renal brush-border membrane vesicles.
    McNamara PD; Pepe LM; Segal S
    Biochim Biophys Acta; 1979 Sep; 556(1):151-60. PubMed ID: 476115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of azaserine upon the proline and methyl alpha-D-glucoside transport systems of rat renal brush-border membranes.
    Hsu BY; Marshall CM; Corcoran SM; Segal S
    Biochim Biophys Acta; 1982 Oct; 692(1):41-51. PubMed ID: 7171588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-cystine transport by papain-treated rat renal brush-border membrane vesicles.
    Hsu BY; Corcoran SM; Segal S
    Biochim Biophys Acta; 1986 Jul; 859(1):79-87. PubMed ID: 3718987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a dipeptide transport system in renal brush border membranes from rabbit.
    Ganapathy V; Mendicino J; Leibach FH
    Biochim Biophys Acta; 1981 Apr; 642(2):381-91. PubMed ID: 7284363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. I. Uptake of glycyl-L-phenylalanine.
    Berteloot A; Khan AH; Ramaswamy K
    Biochim Biophys Acta; 1981 Dec; 649(2):179-88. PubMed ID: 7032591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect on amino acid transport of trypsin treatment of rat renal brush border membranes.
    Hsu BY; Corcoran SM; Marshall CM; Segal S
    Biochim Biophys Acta; 1982 Jul; 689(2):181-93. PubMed ID: 7115706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of L-proline and sodium transport in renal brush border membranes isolated from 7-day-old and adult rats.
    Hsu BY; McNamara PD; Cariola CM; Fenstermacher EA; Rea CT; Reynolds RA; Segal S
    Biosci Rep; 1989 Dec; 9(6):709-19. PubMed ID: 2611362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. II. Uptake of glycyl-L-leucine.
    Berteloot A; Khan AH; Ramaswamy K
    Biochim Biophys Acta; 1982 Mar; 686(1):47-54. PubMed ID: 7066321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental aspects of proline transport in rat renal brush border membranes.
    Medow MS; Roth KS; Goldmann DR; Ginkinger K; Hsu BY; Segal S
    Proc Natl Acad Sci U S A; 1986 Oct; 83(19):7561-4. PubMed ID: 3463985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of tripeptide transport in human jejunal brush-border membrane vesicles.
    Wilson D; Barry JA; Ramaswamy K
    Biochim Biophys Acta; 1989 Nov; 986(1):123-9. PubMed ID: 2819090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-proline transport by brush border membrane vesicles prepared from human placenta.
    Boyd CA; Lund EK
    J Physiol; 1981 Jun; 315():9-19. PubMed ID: 7310726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrier-mediated transport of pyroglutamyl-histidine in renal brush border membrane vesicles.
    Skopicki HA; Fisher K; Zikos D; Flouret G; Bloch R; Kubillus S; Peterson DR
    Am J Physiol; 1988 Dec; 255(6 Pt 1):C822-7. PubMed ID: 3202151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carrier-mediated transport of cephalexin via the dipeptide transport system in rat renal brush-border membrane vesicles.
    Inui K; Okano T; Takano M; Saito H; Hori R
    Biochim Biophys Acta; 1984 Jan; 769(2):449-54. PubMed ID: 6696892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport characteristics of papain-treated brush-border membrane vesicles. Non-involvement of gamma-glutamyltransferase in leucine transport.
    Berteloot A; Bennetts RW; Ramaswamy K
    Biochim Biophys Acta; 1980 Oct; 601(3):592-604. PubMed ID: 6106503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for aminopeptidase N in Na(+)-dependent amino acid transport in bovine renal brush-border membranes.
    Plakidou-Dymock S; Tanner MJ; McGivan JD
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):59-65. PubMed ID: 8094953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The singular effect of an internal K+ gradient (K+i greater than K+o) on the Na+ gradient (Na+o greater than NA+i)-dependent transport of L-glutamate in renal brush border membrane vesicles.
    Sacktor B; Schneider EG
    Int J Biochem; 1980; 12(1-2):229-34. PubMed ID: 7399026
    [No Abstract]   [Full Text] [Related]  

  • 19. Amino acid uptake by isolated renal brush border membrane vesicles in various buffers.
    Foreman JW; Wald H; Reynolds RA; Segal S
    Biochim Biophys Acta; 1981 Aug; 646(1):188-92. PubMed ID: 6791691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-proline transport by newborn rat kidney brush-border membrane vesicles.
    Goldmann DR; Roth KS; Langfitt TW; Segal S
    Biochem J; 1979 Jan; 178(1):253-6. PubMed ID: 435284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.