These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 6138948)

  • 1. Glycine binding to rat CNS membranes: possible cooperative interaction.
    Marvizon JC; Rumigny JF; Benedetti MS; Gomeni C; Benavides J
    Adv Biochem Psychopharmacol; 1983; 37():15-22. PubMed ID: 6138948
    [No Abstract]   [Full Text] [Related]  

  • 2. The glycine receptor: pharmacological studies and mathematical modeling of the allosteric interaction between the glycine- and strychnine-binding sites.
    Marvizón JC; Vázquez J; García Calvo M; Mayor F; Ruíz Gómez A; Valdivieso F; Benavides J
    Mol Pharmacol; 1986 Dec; 30(6):590-7. PubMed ID: 3023812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'High-affinity' binding sites for glycine in synaptosomal-mitochondrial fractions of rat CNS-regions.
    DeFeudis FV; Fando J; Orensanz Muñoz LM
    Experientia; 1977 Aug; 33(8):1068-70. PubMed ID: 891815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional distribution and properties of the glycine cleavage system within the central nervous system of the rat: evidence for an endogenous inhibitor during in vitro assay.
    Daly EC; Nadi NS; Aprison MH
    J Neurochem; 1976 Jan; 26(1):179-85. PubMed ID: 176317
    [No Abstract]   [Full Text] [Related]  

  • 5. The metabolism in vivo of glycine and serine in eight areas of the rat central nervous system.
    Shank RP; Aprison MH
    J Neurochem; 1970 Oct; 17(10):1461-75. PubMed ID: 5471908
    [No Abstract]   [Full Text] [Related]  

  • 6. Interconversion of glycine and serine in a synaptosome fraction isolated from the spinal cord, medulla oblongata, telencephalon, and cerebellum of the rat.
    McBride WJ; Daly E; Aprison MH
    J Neurobiol; 1973; 4(6):557-66. PubMed ID: 4149604
    [No Abstract]   [Full Text] [Related]  

  • 7. Identification and evaluation of O-alkyl substituted hydroxamic acids as potent in vitro inhibitors of the hepatic glycine cleavage system and investigation of their action on in vivo central nervous system glycine concentration.
    Johnson G; Boxer PA; Drummond JT; Boyd DK; Anderson RJ
    Arzneimittelforschung; 1989 Apr; 39(4):432-7. PubMed ID: 2751729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of tropeines and allosteric modulation of ionotropic glycine receptors.
    Maksay G; Nemes P; Bíró T
    J Med Chem; 2004 Dec; 47(25):6384-91. PubMed ID: 15566307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycine uptake in rat central nervous system slices and homogenates: evidence for different uptake systems in spinal cord and cerebral cortex.
    Johnston GA; Iversen LL
    J Neurochem; 1971 Oct; 18(10):1951-61. PubMed ID: 4399087
    [No Abstract]   [Full Text] [Related]  

  • 10. Solubilization of the glycine receptor from rat spinal cord.
    Pfeiffer F; Betz H
    Brain Res; 1981 Dec; 226(1-2):273-9. PubMed ID: 6271346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of fragment C and tetanus toxin binding to rat brain membranes.
    Goldberg RL; Costa T; Habig WH; Kohn LD; Hardegree MC
    Mol Pharmacol; 1981 Nov; 20(3):565-70. PubMed ID: 6120449
    [No Abstract]   [Full Text] [Related]  

  • 12. Distribution of citalopram in the blood serum and in the central nervous system of rats after single and multiple dosage.
    Melzacka M; Rurak A; Adamus A; Daniel W
    Pol J Pharmacol Pharm; 1984; 36(6):675-82. PubMed ID: 6598490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The immunocytochemical localization of enkephalin in the central nervous system of the rat.
    Finley JC; Maderdrut JL; Petrusz P
    J Comp Neurol; 1981 Jun; 198(4):541-65. PubMed ID: 7019273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamatergic regulation of [3H]-noradrenaline release in the medulla oblongata of normotensive and spontaneously hypertensive rats.
    Tsuda K; Tsuda S; Nishio I; Masuyama Y; Goldstein M
    J Hypertens; 1994 May; 12(5):517-22. PubMed ID: 7930551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of various lipid fractions in different parts of the CNS in the rat and the effect of fasting].
    Smídová L; Mourek J
    Cesk Neurol Neurochir; 1979 Mar; 42(2):85-97. PubMed ID: 427950
    [No Abstract]   [Full Text] [Related]  

  • 16. Localization and physiological properties of glycine and GABA receptors in cultures of rat CNS.
    Hösli L; Hösli E
    Adv Biochem Psychopharmacol; 1983; 37():35-46. PubMed ID: 6314764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The distribution of androgen receptor like protein in the central nervous system of rat and human medulla and spinal cord--immunohistochemical study].
    Waragai M; Yamada T; Moroo I
    No To Shinkei; 1993 Jul; 45(7):661-7. PubMed ID: 8398387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ketamine and its interactions with morphine and nalbuphine on the level of enkephalins in some parts of the brain and spinal cord.
    Kołada I; Kmieciak-Kołada K; Huzarska M; Dyaczyńska-Herman A; Herman ZS
    Pol J Pharmacol; 1994; 46(3):139-46. PubMed ID: 8000445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ubiquitin immunoreactivity in the central nervous system of gracile axonal dystrophy (GAD) mouse].
    Wu J; Ichihara N; Chui DH; Yamazaki K; Kikuchi T
    No To Shinkei; 1995 Sep; 47(9):881-5. PubMed ID: 7546937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and distribution of tuberoinfundibular peptide of 39 residues in the rat central nervous system.
    Dobolyi A; Palkovits M; Usdin TB
    J Comp Neurol; 2003 Jan; 455(4):547-66. PubMed ID: 12508326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.