These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 6139438)

  • 1. Effect of miconazole on Saccharomyces cerevisiae.
    Arndt R; Schulz-Harder B
    J Pharm Pharmacol; 1983 Oct; 35(10):668-70. PubMed ID: 6139438
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of two imidazole antimycotics, clotrimazole and miconazole on amino acid transport in Candida albicans.
    Yamaguchi H; Iwata K
    Sabouraudia; 1979 Sep; 17(3):311-22. PubMed ID: 394368
    [No Abstract]   [Full Text] [Related]  

  • 3. The role of glucose and aminoacid starvation in the sensitivity of protein and RNA synthesis to cycloheximide and erythromycin in the yeast Saccharomyces cerevisiae.
    Tassi F; Ferrero I; Donnini C; Marmiroli N
    Microbiologica; 1983 Jan; 6(1):9-18. PubMed ID: 6341782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tamoxifen inhibits RNA and protein synthesis simultaneously in Saccharomyces cerevisiae: partial protection by antioxidants.
    Wiseman H; Cannon M; Arnstein HR
    Biochem Soc Trans; 1990 Oct; 18(5):877-8. PubMed ID: 2083708
    [No Abstract]   [Full Text] [Related]  

  • 5. The protective effect of ascorbate on the inhibition of growth, RNA and protein synthesis by tamoxifen in yeast is time dependent.
    Wiseman H; Cannon M; Arnstein HR
    Biochem Soc Trans; 1990 Dec; 18(6):1167-8. PubMed ID: 2088838
    [No Abstract]   [Full Text] [Related]  

  • 6. Biochemical effects of miconazole on fungi. I. Effects on the uptake and or utilization of purines, pyrimidines, nucleosides, amino acids and glucose by Candida albicans.
    Van den Bossche H
    Biochem Pharmacol; 1974 Feb; 23(4):887-99. PubMed ID: 4596244
    [No Abstract]   [Full Text] [Related]  

  • 7. Protein synthesis in germinating Saccharomyces cerevisiae ascospores.
    Armstrong RL; West TP; Magee PT
    Can J Microbiol; 1984 Mar; 30(3):345-52. PubMed ID: 6372976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode of action of miconazole on yeasts: inhibition of the mitochondrial ATPase.
    Portillo F; Gancedo C
    Eur J Biochem; 1984 Sep; 143(2):273-6. PubMed ID: 6236081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid uptake and protein synthesis in germinating spores of Saccharomyces cerevisiae.
    Steele SD; Miller JJ
    Can J Microbiol; 1977 Apr; 23(4):407-12. PubMed ID: 324585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae.
    Vandenbosch D; De Canck E; Dhondt I; Rigole P; Nelis HJ; Coenye T
    FEMS Yeast Res; 2013 Dec; 13(8):720-30. PubMed ID: 24034557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seminalplasmin, an antimicrobial protein from bull seminal plasma, inhibits growth, and synthesis of nucleic acids and proteins in S. cerevisiae.
    Scheit KH; Shivaji S; Bhargava PM
    J Biochem; 1985 Feb; 97(2):463-71. PubMed ID: 3891745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparative characteristics of the activity of the protein synthesizing systems of wild-type cells and the cytoplasmic petite-mutant of the yeast Saccharomyces cerevisiae].
    Golubkov VI; Kazakova TB; Igdal LG; Mukha GV
    Biokhimiia; 1973; 38(2):277-82. PubMed ID: 4592730
    [No Abstract]   [Full Text] [Related]  

  • 13. [Inhibition of the growth of Escherichia coli and Saccharomyces cerevisiae with saliva containing miconazole in vitro].
    Pase U; Burtone G; Caruso C; De Toffoli A
    G Stomatol Ortognatodonzia; 1985; 4(2):47-8. PubMed ID: 3914975
    [No Abstract]   [Full Text] [Related]  

  • 14. Double-stranded RNA replication in yeast: the killer system.
    Wickner RB
    Annu Rev Biochem; 1986; 55():373-95. PubMed ID: 3527047
    [No Abstract]   [Full Text] [Related]  

  • 15. A study of macromolecular synthesis in a range of radiation sensitive mutants of yeast.
    Piperakis SM; Parry EM
    Int J Radiat Biol Relat Stud Phys Chem Med; 1982 Jan; 41(1):91-8. PubMed ID: 7037671
    [No Abstract]   [Full Text] [Related]  

  • 16. Mitochondrial resistance to miconazole in Saccharomyces cerevisiae.
    Portillo F; Gancedo C
    Mol Gen Genet; 1985; 199(3):495-9. PubMed ID: 3162079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of exogenous hemin in the synthesis of hemoproteins and nonheme proteins during glucose repression in Saccharomyces cerevisiae.
    Gopalan G; Rajamanickam C
    Arch Biochem Biophys; 1986 Jul; 248(1):210-4. PubMed ID: 2873792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamines, macromolecular synthesis and ribosomes in Saccharomyces cerevisiae.
    Miret JJ; Goldemberg SH
    Yeast; 1989 Apr; 5 Spec No():S333-7. PubMed ID: 2665365
    [No Abstract]   [Full Text] [Related]  

  • 19. The isolation and characterization of Ni2+ resistant mutants of Saccharomyces cerevisiae.
    Joho M; Imada Y; Murayama T
    Microbios; 1987; 51(208-209):183-90. PubMed ID: 3316939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mode of antifungal action of (S)2-amino-4-oxo-5-hydroxypentanoic acid, RI-331.
    Yamaguchi M; Yamaki H; Shinoda T; Tago Y; Suzuki H; Nishimura T; Yamaguchi H
    J Antibiot (Tokyo); 1990 Apr; 43(4):411-6. PubMed ID: 2190964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.