These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 6141300)

  • 21. [Characteristics of sensory neurotransmission in co-culture of neurons from the dorsal root ganglion and dorsal horn spinal cord in rats].
    Shypshyna MS; Veselovs'kyĭ MS
    Fiziol Zh (1994); 2010; 56(4):26-36. PubMed ID: 20968035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of presynaptic group I metabotropic glutamate receptors enhances glutamate release in the rat spinal cord substantia gelatinosa.
    Park YK; Galik J; Ryu PD; Randic M
    Neurosci Lett; 2004 May; 361(1-3):220-4. PubMed ID: 15135933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Histochemistry and choline acetyltransferase in cat spinal cord and spinal ganglia].
    Motavkin PA; Okhotin VE
    Arkh Anat Gistol Embriol; 1978 Sep; 75(9):52-6. PubMed ID: 718431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein phosphatase modulates the phosphorylation of spinal cord NMDA receptors in rats following intradermal injection of capsaicin.
    Zhang X; Wu J; Lei Y; Fang L; Willis WD
    Brain Res Mol Brain Res; 2005 Aug; 138(2):264-72. PubMed ID: 15919130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat.
    Vizzard MA; Erdman SL; Erickson VL; Stewart RJ; Roppolo JR; De Groat WC
    J Comp Neurol; 1994 Jan; 339(1):62-75. PubMed ID: 8106662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ontogenesis of two genuine marker enzymes of primary sensory neurons in the rat.
    Gyulai F
    Z Mikrosk Anat Forsch; 1988; 102(3):423-31. PubMed ID: 2848375
    [No Abstract]   [Full Text] [Related]  

  • 27. Disinhibition as an organizing principle in the nervous system. The role of gamma-aminobutyric acid.
    Roberts E
    Adv Neurol; 1974; 5():127-43. PubMed ID: 4155229
    [No Abstract]   [Full Text] [Related]  

  • 28. Further studies of glucocorticoid effects on spinal cord function: single and repetitive monosynaptic transmission and apparent Ia afferent transmitter turnover.
    Hall ED; Baker T
    J Pharmacol Exp Ther; 1979 Jul; 210(1):112-5. PubMed ID: 36476
    [No Abstract]   [Full Text] [Related]  

  • 29. Depletion of glutamic acid decarboxylase (GAD I) activity from the spinal cord following dorsal-root section.
    Gottesfeld Z; Kelly JS; Rayner CN
    J Physiol; 1973 May; 231(1):25P-26P. PubMed ID: 4715355
    [No Abstract]   [Full Text] [Related]  

  • 30. Anatomical evidence for glutamatergic transmission in primary sensory neurons and onto postganglionic neurons controlling penile erection in rats: an ultrastructural study with neuronal tracing and immunocytochemistry.
    Aïoun J; Rampin O
    Cell Tissue Res; 2006 Mar; 323(3):359-75. PubMed ID: 16307288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in neurotransmitter uptake in the spinal cord following peripheral nerve injury.
    Somps CJ; Boyajian CL; Luttges MW
    Synapse; 1988; 2(2):109-16. PubMed ID: 2901793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relation of glutaminase I activity to glutamic acid concentration in the rat kidney.
    GOLDSTEIN L; COPENHAVER JH
    Am J Physiol; 1960 Feb; 198():227-9. PubMed ID: 13850772
    [No Abstract]   [Full Text] [Related]  

  • 33. Repression of glutaminase I in the rat retina by administration of sodium-L-glutamate II.
    FREEDMAN JK; POTTS AM
    Invest Ophthalmol; 1963 Jun; 2():252-8. PubMed ID: 13959424
    [No Abstract]   [Full Text] [Related]  

  • 34. The inhibition of glutaminase by glutamic acid.
    WAELSCH H; OWADES P
    Fed Proc; 1948 Mar; 7(1 Pt 1):197. PubMed ID: 18938833
    [No Abstract]   [Full Text] [Related]  

  • 35. Tumour-Derived Glutamate: Linking Aberrant Cancer Cell Metabolism to Peripheral Sensory Pain Pathways.
    Fazzari J; Linher-Melville K; Singh G
    Curr Neuropharmacol; 2017; 15(4):620-636. PubMed ID: 27157265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fixative composition alters distributions of immunoreactivity for glutaminase and two markers of nociceptive neurons, Nav1.8 and TRPV1, in the rat dorsal root ganglion.
    Hoffman EM; Schechter R; Miller KE
    J Histochem Cytochem; 2010 Apr; 58(4):329-44. PubMed ID: 20026672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective localization of glutaminase in spinal and sensory nerve cells. A potential marker for glutamate neurotransmission.
    Cangro CB; Sweetnam PM; Neale JH; Haser WG; Curthoys NP
    JAMA; 1984 Feb; 251(6):797. PubMed ID: 6141300
    [No Abstract]   [Full Text] [Related]  

  • 38. Co-localization of fixative-modified glutamate and glutaminase in neurons of the spinal trigeminal nucleus of the rat: an immunohistochemical and immunoradiochemical analysis.
    Magnusson KR; Larson AA; Madl JE; Altschuler RA; Beitz AJ
    J Comp Neurol; 1986 May; 247(4):477-90. PubMed ID: 2873153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of glutamine by sections of spinal cord of cat. Histochemical study of the activity of glutaminase I.
    Martínez Rodríguez R; Toledano A
    Trab Inst Cajal Invest Biol; 1968; 60():109-25. PubMed ID: 5747883
    [No Abstract]   [Full Text] [Related]  

  • 40. Colocalization of fixative-modified glutamate and glutaminase but not GAD in rubrospinal neurons.
    Beitz AJ; Ecklund LJ
    J Comp Neurol; 1988 Aug; 274(2):265-79. PubMed ID: 2463289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.