These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 6141811)

  • 1. [Characteristics of the cerebral cortex neuronal reaction to exposure to an alternating magnetic field during the administration of glutamic acid].
    Soldatova LP; Udintsev NA
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1984; (1):52-4. PubMed ID: 6141811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Sequence of pathomorphological reactions to the action of alternating magnetic fields].
    Soldatova LP
    Arkh Anat Gistol Embriol; 1982 Jul; 83(7):12-5. PubMed ID: 7125913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Pathomorphological reactions of the cerebral cortex nerve elements during treatment with an alternating magnetic field].
    Toroptsev IV; Soldatova LP
    Arkh Patol; 1981; 43(11):33-6. PubMed ID: 7316830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing cortical neuron injury with Fluoro-Jade labeling after a neurotoxic regimen of methamphetamine.
    Eisch AJ; Schmued LC; Marshall JF
    Synapse; 1998 Nov; 30(3):329-33. PubMed ID: 9776136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Picrotoxin action on the receptive fields of the cat sensorimotor cortex neurons.
    Batuev AS; Alexandrov AA; Scheynikov NA
    J Neurosci Res; 1982; 7(1):49-55. PubMed ID: 6121918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphometric studies of specific brain regions of rats chronically intoxicated with the organophosphate methamidophos.
    Pelegrino JR; Calore EE; Saldiva PH; Almeida VF; Peres NM; Vilela-de-Almeida L
    Ecotoxicol Environ Saf; 2006 Jun; 64(2):251-5. PubMed ID: 16002140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacologic analysis of the mechanism of dark neuron production in cerebral cortex.
    Kherani ZS; Auer RN
    Acta Neuropathol; 2008 Oct; 116(4):447-52. PubMed ID: 18521615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 60 Hz magnetic fields and central cholinergic activity: effects of exposure intensity and duration.
    Lai H; Carino M
    Bioelectromagnetics; 1999; 20(5):284-9. PubMed ID: 10407513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Interneuronal relations in elementary neuronal assemblies].
    Kogan AB
    Fiziol Zh SSSR Im I M Sechenova; 1984 Aug; 70(8):1125-31. PubMed ID: 6149962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Neuronal interaction in a micropopulation of the cerebral cortex following electrophoretic microapplication of L-glutamate].
    Ovcharenko IuS; Miasnikov AA; Kotliar BI
    Fiziol Zh SSSR Im I M Sechenova; 1981 Sep; 67(9):1393-6. PubMed ID: 6117488
    [No Abstract]   [Full Text] [Related]  

  • 11. [Activity of neurons in the parietal associative cortex in the area of the substantia nigra in cats exposed to magnetic fields with an 8 Hz frequency].
    Orlova TV; Sidiakin VG; Kulichenko AM; Pavlenko VB
    Biofizika; 1995; 40(5):978-82. PubMed ID: 8555296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study of cortical neurons by the iontophoretic method controlled by neuronal activity].
    Bobrovnikov LV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1986; 36(5):975-7. PubMed ID: 2879399
    [No Abstract]   [Full Text] [Related]  

  • 13. Glutamate and GABA metabolism in transient and permanent middle cerebral artery occlusion in rat: importance of astrocytes for neuronal survival.
    Håberg A; Qu H; Sonnewald U
    Neurochem Int; 2006; 48(6-7):531-40. PubMed ID: 16504342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in neuronal survival.
    Håberg A; Qu H; Saether O; Unsgård G; Haraldseth O; Sonnewald U
    J Cereb Blood Flow Metab; 2001 Dec; 21(12):1451-63. PubMed ID: 11740207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-dependent emergence of a parieto-insular corticocortical signal flow in developing rats.
    Yoshimura H; Kato N; Honjo M; Sugai T; Segami N; Onoda N
    Brain Res Dev Brain Res; 2004 Mar; 149(1):45-51. PubMed ID: 15013628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Subcellular mechanisms of the action of weak extra-low frequency electromagnetic fields on the cerebral cortex].
    Akimova IM; Novikova TA
    Biull Eksp Biol Med; 1988 Jun; 105(6):738-41. PubMed ID: 3390596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium di-n-propylacetate (valproate) action on single neurons in rat cerebral cortex and hippocampus.
    Blume HW; Lamour Y; Arnauld E; Layton BS; Renaud LP
    Brain Res; 1979 Jul; 171(1):182-5. PubMed ID: 380779
    [No Abstract]   [Full Text] [Related]  

  • 18. [Effect of extremely low frequency magnetic field on the focal brain injury in rats].
    Zhao L; Zhao DM; Wei JH; Wang YQ; Huang ZM
    Space Med Med Eng (Beijing); 2003 Feb; 16(1):75-6. PubMed ID: 12728965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Action of N-acetyl-aspartic and N-acetyl-aspartyl-glutamic acids on the spontaneous electrical activity of the cat cerebral cortex].
    Curatolo A; Marchetti M; Brancati A; Salleo A
    Arch Sci Biol (Bologna); 1967; 51(2):98-103. PubMed ID: 6064294
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of electrical and chemical stimulation of the amygdala on the spontaneous discharge in the insular cortex in rats.
    Hanamori T
    Brain Res; 2009 Jun; 1276():91-102. PubMed ID: 19389389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.