These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 6141947)
1. Cholecystokinin octapeptide levels in rat brain are changed after subchronic neuroleptic treatment. Frey P Eur J Pharmacol; 1983 Nov; 95(1-2):87-92. PubMed ID: 6141947 [TBL] [Abstract][Full Text] [Related]
2. Cholecystokinin octapeptide (CCK 26-33), nonsulfated octapeptide and tetrapeptide (CCK 30-33) in rat brain: Analysis by high pressure liquid chromatography (HPLC) and radioimmunoassay (RIA). Frey P Neurochem Int; 1983; 5(6):811-5. PubMed ID: 20488013 [TBL] [Abstract][Full Text] [Related]
3. Effects of short- and long-term haloperidol administration and withdrawal on regional brain cholecystokinin and neurotensin concentrations in the rat. Radke JM; MacLennan AJ; Beinfeld MC; Bissette G; Nemeroff CB; Vincent SR; Fibiger HC Brain Res; 1989 Feb; 480(1-2):178-83. PubMed ID: 2713650 [TBL] [Abstract][Full Text] [Related]
4. In vivo release of cholecystokinin-like immunoreactivity in rat frontal cortex under freely moving conditions. Takita M; Tsuruta T; Oh-hashi Y; Kato T Neurosci Lett; 1989 May; 100(1-3):249-53. PubMed ID: 2761773 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of haloperidol-induced catalepsy by cholecystokinin octapeptides after central administration to rats. Kádár T; Penke B; Kovács K; Telegdy G Neuropharmacology; 1985 Jun; 24(6):577-80. PubMed ID: 2862602 [TBL] [Abstract][Full Text] [Related]
6. Effects of antipsychotic drugs on cholecystokinin and preprotachykinin (substance P) mRNA expression in the rat hippocampal formation. Zachrisson O; Nomikos GG; Marcus MM; Svensson TH; Lindefors N Eur Neuropsychopharmacol; 2000 Sep; 10(5):355-63. PubMed ID: 10974607 [TBL] [Abstract][Full Text] [Related]
7. Increased brain levels of cholecystokinin octapeptide after kainic acid-induced seizures in the rat. Meyer DK; Widmann R; Sperk G Neurosci Lett; 1986 Aug; 69(2):208-11. PubMed ID: 3763049 [TBL] [Abstract][Full Text] [Related]
8. Neuroleptic-like properties of cholecystokinin analogs: distinctive mechanisms underlying similar behavioral profiles depending on the route of administration. De Witte P; Gewiss M; Roques B; Vanderhaeghen JJ Peptides; 1988; 9(4):739-43. PubMed ID: 2906429 [TBL] [Abstract][Full Text] [Related]
9. Determination of cholecystokinin tetrapeptide and cholecystokinin octapeptide sulfate in different rat brain regions by high-pressure liquid chromatography with electrochemical detection. Sauter A; Frick W Anal Biochem; 1983 Sep; 133(2):307-13. PubMed ID: 6314843 [TBL] [Abstract][Full Text] [Related]
10. Decreased haloperidol-induced potentiation of zif268 mRNA expression in the nucleus accumbens shell and the dorsal lateral striatum of rats lacking cholecystokinin-A receptors. Shilling PD; Feifel D Synapse; 2002 Feb; 43(2):134-8. PubMed ID: 11754493 [TBL] [Abstract][Full Text] [Related]
11. Haloperidol and clozapine: differential effects on the sensitivity of caudate-putamen neurons to dopamine agonists and cholecystokinin following one month continuous treatment. Hu XT; Wang RY Brain Res; 1989 May; 486(2):325-33. PubMed ID: 2786442 [TBL] [Abstract][Full Text] [Related]
12. Effects of neuroleptic drugs on brain beta-endorphin immunoreactivity. Beal MF; Fisher J; Carr DB; Martin JB Neurosci Lett; 1985 Jan; 53(2):173-8. PubMed ID: 2858834 [TBL] [Abstract][Full Text] [Related]
13. Quantitation and identification of two cholecystokinin peptides, CCK-4 and CCK-8s, in rat brain by HPLC and fast atom bombardment mass spectrometry. Qureshi GA; Bednar I; Min Q; Södersten P; Silberring J; Nyberg F; Thörnwall M Biomed Chromatogr; 1993; 7(5):251-5. PubMed ID: 8305854 [TBL] [Abstract][Full Text] [Related]
14. Dopaminergic agents affected neuronal transmission of cholecystokinin in the rat brain. Fukamauchi F; Yoshikawa T; Kaneno S; Shibuya H; Takahashi R Neuropeptides; 1987 Oct; 10(3):207-20. PubMed ID: 2825061 [TBL] [Abstract][Full Text] [Related]
15. In vivo sulfation of cholecystokinin octapeptide. Possible interactions of the two forms of cholecystokinin with dopamine in the brain. Penke B; Kovács GL; Zsigó J; Kádár T; Szabó G; Kovács K; Telegdy G Ann N Y Acad Sci; 1985; 448():293-305. PubMed ID: 2862826 [TBL] [Abstract][Full Text] [Related]
16. Enzyme immunoassay for cholecystokinin octapeptide sulfate and its application. Yamamoto H; Kato T J Neurochem; 1986 Mar; 46(3):702-7. PubMed ID: 3081683 [TBL] [Abstract][Full Text] [Related]
17. Further analysis of the effects of cholecystokinin octapeptides on avoidance behaviour in rats. Fekete M; Lengyel A; Hegedüs B; Penke B; Zarándy M; Tóth G; Telegdy G Eur J Pharmacol; 1984 Feb; 98(1):79-91. PubMed ID: 6325212 [TBL] [Abstract][Full Text] [Related]
18. Failure of chronic haloperidol treatment to alter levels of cholecystokinin in the rat brain striatum and olfactory tuberclenucleus accumbens area. Gysling K; Beinfeld MC Neuropeptides; 1984 Sep; 4(5):421-3. PubMed ID: 6493457 [TBL] [Abstract][Full Text] [Related]
19. Regional differences in the development of cholecystokinin-like activity in rat brain. Varró A; Bu'lock AJ; Williams RG; Dockray GJ Brain Res; 1983 Sep; 285(3):347-52. PubMed ID: 6313134 [TBL] [Abstract][Full Text] [Related]
20. Effects of cholecystokinin (CCK-33) and its fragments, C-terminal octapeptide (CCK-8) and C-terminal tetrapeptide (CCK-4), on the circulatory system of diabetic rats. Fiedorowicz RJ; Wiśniewski K Pol J Pharmacol Pharm; 1989; 41(6):561-72. PubMed ID: 2485904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]