These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6142135)

  • 21. Spontaneous dorsal root potentials arise from interneuronal activity in the isolated frog spinal cord.
    Ryan GP; Hackman JC; Wohlberg CJ; Davidoff RA
    Brain Res; 1984 Jun; 301(2):331-41. PubMed ID: 6203611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Further evidence in support of taurine as a mediator of synaptic transmission in the frog spinal cord.
    Padjen AL; Mitsoglou GM; Hassessian H
    Brain Res; 1989 May; 488(1-2):288-96. PubMed ID: 2787189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of amino acids and antagonists on the isolated hemisected spinal cord of the immature rat.
    Evans RH
    Br J Pharmacol; 1978 Feb; 62(2):171-6. PubMed ID: 623933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GABA-mediated baroreceptor inhibition of reticulospinal neurons.
    Sun MK; Guyenet PG
    Am J Physiol; 1985 Dec; 249(6 Pt 2):R672-80. PubMed ID: 2866718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 86Rubidium release from cultured primary astrocytes: effects of excitatory and inhibitory amino acids.
    Holopainen I; Louve M; Enkvist MO; Akerman KE
    Neuroscience; 1989; 30(1):223-9. PubMed ID: 2568601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serotonin1A facilitation of frog motoneuron responses to afferent stimuli and to N-methyl-D-aspartate.
    Holohean AM; Hackman JC; Shope SB; Davidoff RA
    Neuroscience; 1992; 48(2):469-77. PubMed ID: 1351269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1998 May; 79(5):2581-92. PubMed ID: 9582230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Action of 5-hydroxytryptamine on isolated spinal cord of bullfrogs.
    Shirasawa Y; Koketsu K
    Jpn J Pharmacol; 1977 Feb; 27(1):23-9. PubMed ID: 194076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Primary receptor for inhibitory transmitters in lamprey spinal cord neurons.
    Baev KV; Rusin KI; Safronov BV
    Neuroscience; 1992; 46(4):931-41. PubMed ID: 1311817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conductance changes during bath application of beta-alanine and taurine in giant interneurons of the isolated lamprey spinal cord.
    Homma S
    Brain Res; 1979 Sep; 173(2):287-93. PubMed ID: 487090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of the actions of agonists and antagonists at non-NMDA receptors of C fibres and motoneurones of the immature rat spinal cord in vitro.
    Pook P; Brugger F; Hawkins NS; Clark KC; Watkins JC; Evans RH
    Br J Pharmacol; 1993 Jan; 108(1):179-84. PubMed ID: 8094024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stizolobic acid on frog spinal cord; possible species dependent activation of excitatory amino acid receptors.
    Maruyama M; Takeda K
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1993 Mar; 104(3):439-44. PubMed ID: 8103436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of 5-HT1C/2 receptors depresses polysynaptic reflexes and excitatory amino acid-induced motoneuron responses in frog spinal cord.
    Holohean AM; Hackman JC; Shope SB; Davidoff RA
    Brain Res; 1992 May; 579(1):8-16. PubMed ID: 1320445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uneven distribution of excitatory amino acid receptors on ventral horn neurones of newborn rat spinal cord.
    Onodera K; Takeuchi A
    J Physiol; 1991 Aug; 439():257-76. PubMed ID: 1680187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zinc modulates primary afferent fiber-evoked responses of ventral roots in neonatal rat spinal cord in vitro.
    Otsuguro K; Ohta T; Ito S
    Neuroscience; 2006; 138(1):281-91. PubMed ID: 16360285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the electrogenic sodium pump in the glutamate afterhyperpolarization of frog spinal cord.
    Padjen AL; Smith PA
    J Physiol; 1983 Mar; 336():433-51. PubMed ID: 6308228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of acromelic acid A on the binding of [3H]glutamic acid and [3H]kainic acid to synaptic membranes and on the depolarization at the frog spinal cord.
    Maruyama M; Takeda K
    Brain Res; 1989 Dec; 504(2):328-31. PubMed ID: 2574623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of caroverine and diltiazem on synaptic responses, L-glutamate-induced depolarization and potassium efflux in the frog spinal cord.
    Kudo Y; Shibata S
    Br J Pharmacol; 1984 Nov; 83(3):813-20. PubMed ID: 6150743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Inhibitory regulation of glutamate receptors in the frog motoneuron].
    Kalinina NI; KurchavyÄ­ GG; Veselkin NP
    Ross Fiziol Zh Im I M Sechenova; 2012 May; 98(5):575-87. PubMed ID: 22838192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of D-aspartate release by glutamate and GABA receptors in cerebral cortical slices from developing and ageing mice.
    Saransaari P; Oja SS
    Neuroscience; 1994 May; 60(1):191-8. PubMed ID: 8052412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.