These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6142487)

  • 41. Establishment of a 3D-dynamic osteoblasts-osteoclasts co-culture model to simulate the jawbone microenvironment in vitro.
    Penolazzi L; Lolli A; Sardelli L; Angelozzi M; Lambertini E; Trombelli L; Ciarpella F; Vecchiatini R; Piva R
    Life Sci; 2016 May; 152():82-93. PubMed ID: 27015789
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellular biology and biochemical mechanism of bone resorption. A review of recent developments on the formation, activation, and mode of action of osteoclasts.
    Vaes G
    Clin Orthop Relat Res; 1988 Jun; (231):239-71. PubMed ID: 3286076
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts.
    Zimmerman D; Jin F; Leboy P; Hardy S; Damsky C
    Dev Biol; 2000 Apr; 220(1):2-15. PubMed ID: 10720426
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of apoptosis in osteoclasts and osteoblastic cells.
    Xing L; Boyce BF
    Biochem Biophys Res Commun; 2005 Mar; 328(3):709-20. PubMed ID: 15694405
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physiology of bone.
    Grabowski P
    Endocr Dev; 2009; 16():32-48. PubMed ID: 19494659
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bone organic matrix components: their roles in skeletal physiology.
    Camozzi V; Vescini F; Luisetto G; Moro L
    J Endocrinol Invest; 2010; 33(7 Suppl):13-5. PubMed ID: 20938220
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Paracrine regulation of bone remodeling.
    Weryha G; Leclère J
    Horm Res; 1995; 43(1-3):69-75. PubMed ID: 7721265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of bone cell development and function: implication for renal osteodystrophy.
    Disthabanchong S; González EA
    J Investig Med; 2001 May; 49(3):240-9. PubMed ID: 11352181
    [No Abstract]   [Full Text] [Related]  

  • 49. Bone cell biology: the regulation of development, structure, and function in the skeleton.
    Marks SC; Popoff SN
    Am J Anat; 1988 Sep; 183(1):1-44. PubMed ID: 3055928
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of various fluoride concentrations on new bone formation in intramuscular implants of bone matrix in mice.
    Broulík PD
    Physiol Res; 1996; 45(6):449-51. PubMed ID: 9085375
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mathematical model of paracrine interactions between osteoclasts and osteoblasts predicts anabolic action of parathyroid hormone on bone.
    Komarova SV
    Endocrinology; 2005 Aug; 146(8):3589-95. PubMed ID: 15860557
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibition of bone matrix formation, mineralization, and resorption in thyroparathyroidectomized rats.
    Wergedal J; Stauffer M; Baylink D; Rich C
    J Clin Invest; 1973 May; 52(5):1052-8. PubMed ID: 4700483
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cell and matrix reactions at titanium implants in surgically prepared rat tibiae.
    Masuda T; Salvi GE; Offenbacher S; Felton DA; Cooper LF
    Int J Oral Maxillofac Implants; 1997; 12(4):472-85. PubMed ID: 9274076
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Morphological study on cell-cell interaction between osteoclasts and osteoblasts].
    Nakamura H
    Kaibogaku Zasshi; 2000 Oct; 75(5):427-32. PubMed ID: 11155688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A quantitative histological study on bone formation in human cancellous bone.
    Merz WA; Schenk RK
    Acta Anat (Basel); 1970; 76(1):1-15. PubMed ID: 4099686
    [No Abstract]   [Full Text] [Related]  

  • 56. Ultrastructure, tartrate-resistant acid phosphatase activity and calcitonin responsiveness of osteoclasts at sites of demineralized bone matrix implant-induced osteogenesis.
    Bagi CM; Miller SC
    Clin Orthop Relat Res; 1991 Aug; (269):257-65. PubMed ID: 1864048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Osteocalcin fragment in bone matrix enhances osteoclast maturation at a late stage of osteoclast differentiation.
    Ishida M; Amano S
    J Bone Miner Metab; 2004; 22(5):415-29. PubMed ID: 15316862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of cAMP in phenotypic changes of osteoblasts.
    Nishihara S; Ikeda M; Ozawa H; Akiyama M; Yamaguchi S; Nakahama KI
    Biochem Biophys Res Commun; 2018 Jan; 495(1):941-946. PubMed ID: 29170126
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.
    Florencio-Silva R; Sasso GR; Sasso-Cerri E; Simões MJ; Cerri PS
    Biomed Res Int; 2015; 2015():421746. PubMed ID: 26247020
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The biology of normal bone remodelling.
    Katsimbri P
    Eur J Cancer Care (Engl); 2017 Nov; 26(6):. PubMed ID: 28786518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.