These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 6142753)

  • 1. Microinjection of vasopressin and two related peptides into the amygdala: enhancing effect on local dopamine neurotransmission.
    van Heuven-Nolsen D; De Kloet ER; De Wied D; Versteeg DH
    Brain Res; 1984 Feb; 293(1):191-5. PubMed ID: 6142753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pro-Leu-GlyNH2 affects dopamine and noradrenaline utilization in rat limbic-forebrain nuclei.
    van Heuven-Nolsen D; de Kloet ER; Versteeg DH
    Brain Res; 1984 Nov; 322(2):213-8. PubMed ID: 6150749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of vasopressin with the nigro-striatal dopamine system: site and mechanism of action.
    van Heuven-Nolsen D; Versteeg DH
    Brain Res; 1985 Jul; 337(2):269-76. PubMed ID: 4027572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of melanotrophin release inhibiting factor (MIF) and cyclo (Leu-Gly) on the tolerance to morphine-induced antinociception in the rat: a dose-response study.
    Bhargava HN
    Br J Pharmacol; 1981 Apr; 72(4):707-14. PubMed ID: 6116510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of oxytocin and vasopressin on memory consolidation: sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures.
    Kovács GL; Bohus B; Versteeg DH; de Kloet ER; de Wied D
    Brain Res; 1979 Oct; 175(2):303-14. PubMed ID: 487159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microinjection of anti-vasopressin serum into limbic structures of the rat brain: effects on passive avoidance responding and on local catecholamine utilization.
    Veldhuis HD; van Wimersma Greidanus TB; Versteeg DH
    Brain Res; 1987 Nov; 425(1):167-73. PubMed ID: 3427417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of dopaminergic neurotransmission in the 6-hydroxydopamine lesioned rotational model by peptidomimetic analogues of L-prolyl-L-leucyl-glycinamide.
    Ott MC; Mishra RK; Johnson RL
    Brain Res; 1996 Oct; 737(1-2):287-91. PubMed ID: 8930377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of neurohypophyseal peptides on the formation of active avoidance conditioned reflex behavior.
    Ibragimov RSh
    Neurosci Behav Physiol; 1990; 20(3):189-93. PubMed ID: 1977096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine-vasopressin inhibits centrally induced pressor responses by involving hippocampal mechanisms.
    Versteeg CA; De Jong W; Bohus B
    Brain Res; 1984 Feb; 292(2):317-26. PubMed ID: 6140991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the interaction between pro-leu-gly-NH2 and catecholaminergic drugs on MSH release from rat pituitaries incubated in vitro.
    Vivas A; Celis ME
    Neuroendocrinology; 1982; 35(3):150-4. PubMed ID: 6127639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine receptor modulation by Pro-Leu-Gly-NH2 analogues possessing cyclic amino acid residues at the C-terminal position.
    Johnson RL; Rajakumar G; Mishra RK
    J Med Chem; 1986 Oct; 29(10):2100-4. PubMed ID: 2876103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced response to apomorphine in rats treated with multiple injections of human beta endorphin and its blockade by Pro-Leu-Gly-NH2 and cyclo (Leu-Gly).
    Bhargava HN
    Life Sci; 1981 Nov; 29(19):1945-9. PubMed ID: 6118804
    [No Abstract]   [Full Text] [Related]  

  • 13. The use of striatal dopaminergic supersensitivity for the evaluation of drugs with possible antidyskinetic properties.
    Valchár M; Krejcí I; Kasafírek E; Schuh J; Dlabac A
    Pol J Pharmacol Pharm; 1985; 37(3):311-5. PubMed ID: 2866500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Various mechanisms of action of vasopressin on animal behavior].
    Verevkina SV
    Fiziol Zh SSSR Im I M Sechenova; 1987 May; 73(5):590-4. PubMed ID: 3622821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a functional relationship between noradrenaline and neurohypophyseal peptides in the brainstem of rats.
    Vallejo M; Lightman SL
    Brain Res; 1987 Oct; 422(2):295-302. PubMed ID: 3676790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of substantia nigra self-stimulation by neuropeptides related to neurohypophyseal hormones.
    Dorsa DM; van Ree JM
    Brain Res; 1979 Aug; 172(2):367-71. PubMed ID: 37991
    [No Abstract]   [Full Text] [Related]  

  • 17. [Effect of neurohypophyseal peptides on the formation of a conditioned feeding reflex in the rat].
    Gasanov GG; Telegdi G; Ibragimov RSh; Kadar T
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1986; 36(5):905-12. PubMed ID: 2879398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of dopaminergic and glutamatergic systems of the basolateral amygdala in amnesia induced by the stimulation of dorsal hippocampal cannabinoid receptors.
    Rezayof A; Habibi P; Zarrindast MR
    Neuroscience; 2011 Feb; 175():118-26. PubMed ID: 21145945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitation of avoidance behavior by vasopressin fragments microinjected into limbic-midbrain structures.
    Kovács GL; Veldhuis HD; Versteeg DH; De Wied D
    Brain Res; 1986 Apr; 371(1):17-24. PubMed ID: 3708341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative activity of memory-modulating neuropeptides before and after electric shock in white rats.
    Medvedev VI; Bakharev VD; Kaurov OA
    Neurosci Behav Physiol; 1985; 15(3):240-6. PubMed ID: 2863780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.