These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 6142884)
1. Increase of Na+ gradient-dependent L-glutamate and L-aspartate transport in high K+ dog erythrocytes associated with high activity of (Na+, K+)-ATPase. Inaba M; Maede Y J Biol Chem; 1984 Jan; 259(1):312-7. PubMed ID: 6142884 [TBL] [Abstract][Full Text] [Related]
2. Increase of Na-K-ATPase activity, glutamate, and aspartate uptake in dog erythrocytes associated with hereditary high accumulation of GSH, glutamate, glutamine, and aspartate. Maede Y; Inaba M; Taniguchi N Blood; 1983 Mar; 61(3):493-9. PubMed ID: 6297638 [TBL] [Abstract][Full Text] [Related]
3. Variant of canine erythrocytes with high potassium content and lack of glutathione accumulation. Fujise H; Mori M; Ogawa E; Maede Y Am J Vet Res; 1993 Apr; 54(4):602-6. PubMed ID: 8097905 [TBL] [Abstract][Full Text] [Related]
4. Activation of electrogenic Rb+ transport of (Na,K)-ATPase by an electric field. Serpersu EH; Tsong TY J Biol Chem; 1984 Jun; 259(11):7155-62. PubMed ID: 6327708 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of Na,K-ATPase activity reduces Babesia gibsoni infection of canine erythrocytes with inherited high K, low Na concentrations. Yamasaki M; Takada A; Yamato O; Maede Y J Parasitol; 2005 Dec; 91(6):1287-92. PubMed ID: 16539007 [TBL] [Abstract][Full Text] [Related]
6. Relation between erythrocyte reduced glutathione and glutamate concentrations in Korean Jindo dogs with erythrocytes possessing hereditary high activity of Na-K-ATPase and a high concentration of potassium. Yamato O; Lee KW; Chang HS; Tajima M; Maede Y J Vet Med Sci; 1999 Oct; 61(10):1179-82. PubMed ID: 10563301 [TBL] [Abstract][Full Text] [Related]
7. Effects and mechanisms of action of ionophorous antibiotics valinomycin and salinomycin-Na on Babesia gibsoni in vitro. Yamasaki M; Nakamura K; Tamura N; Hwang SJ; Yoshikawa M; Sasaki N; Ohta H; Yamato O; Maede Y; Takiguchi M J Parasitol; 2009 Dec; 95(6):1532-8. PubMed ID: 20929429 [TBL] [Abstract][Full Text] [Related]
8. Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na-/K(+)-ATPase in brain tissue in vitro. Nanitsos EK; Acosta GB; Saihara Y; Stanton D; Liao LP; Shin JW; Rae C; Balcar VJ Clin Exp Pharmacol Physiol; 2004 Nov; 31(11):762-9. PubMed ID: 15566390 [TBL] [Abstract][Full Text] [Related]
9. Human and dog erythrocytes: relationship between cellular ATP levels, ATP consumption and potassium concentrations. Miseta A; Somoskeoy S; Galambos C; Kellermayer M; Wheatley DN; Cameron IL Physiol Chem Phys Med NMR; 1992; 24(1):11-20. PubMed ID: 1317586 [TBL] [Abstract][Full Text] [Related]
10. Several cation transporters and volume regulation in high-K dog red blood cells. Fujise H; Yamada I; Masuda M; Miyazawa Y; Ogawa E; Takahashi R Am J Physiol; 1991 Mar; 260(3 Pt 1):C589-97. PubMed ID: 1848403 [TBL] [Abstract][Full Text] [Related]
11. Sodium gradient-dependent L-glutamate transport is localized to the canalicular domain of liver plasma membranes. Studies in rat liver sinusoidal and canalicular membrane vesicles. Ballatori N; Moseley RH; Boyer JL J Biol Chem; 1986 May; 261(14):6216-21. PubMed ID: 2871024 [TBL] [Abstract][Full Text] [Related]
12. Electrogenic sodium-sodium exchange carried out by Na,K-ATPase containing the amino acid substitution Glu779Ala. Peluffo RD; Argüello JM; Lingrel JB; Berlin JR J Gen Physiol; 2000 Jul; 116(1):61-73. PubMed ID: 10871640 [TBL] [Abstract][Full Text] [Related]
13. Active amino acid transport in plasma membrane vesicles from Simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake. Lever JE J Biol Chem; 1977 Mar; 252(6):1990-7. PubMed ID: 66232 [TBL] [Abstract][Full Text] [Related]
14. Glutamate uptake stimulates Na+,K+-ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain. Pellerin L; Magistretti PJ J Neurochem; 1997 Nov; 69(5):2132-7. PubMed ID: 9349559 [TBL] [Abstract][Full Text] [Related]
15. Involvement of (Na+ + K+)-ATPase in binding and actions of palytoxin on human erythrocytes. Böttinger H; Béress L; Habermann E Biochim Biophys Acta; 1986 Sep; 861(1):165-76. PubMed ID: 2875735 [TBL] [Abstract][Full Text] [Related]
16. (Na,K)-ATPase and Ouabain binding in reticulocytes from dogs with high K and low K erythrocytes and their changes during maturation. Maede Y; Inaba M J Biol Chem; 1985 Mar; 260(6):3337-43. PubMed ID: 2982856 [TBL] [Abstract][Full Text] [Related]
17. Studies on the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain-insensitive Li+ transport. Effects of bicarbonate and dipyridamole. Duhm J; Becker BF Pflugers Arch; 1977 Jan; 367(3):211-9. PubMed ID: 13345 [TBL] [Abstract][Full Text] [Related]
18. An effect of chloride on (Na+K) co-transport in human red blood cells. Chipperfield AR Nature; 1980 Jul; 286(5770):281-2. PubMed ID: 6250053 [TBL] [Abstract][Full Text] [Related]
19. The transport of acidic amino acids and their analogues across monolayers of human intestinal absorptive (Caco-2) cells in vitro. Nicklin PL; Irwin WJ; Hassan IF; Mackay M; Dixon HB Biochim Biophys Acta; 1995 Nov; 1269(2):176-86. PubMed ID: 7488651 [TBL] [Abstract][Full Text] [Related]
20. Activation of Na+ and K+ pumping modes of (Na,K)-ATPase by an oscillating electric field. Liu DS; Astumian RD; Tsong TY J Biol Chem; 1990 May; 265(13):7260-7. PubMed ID: 2158997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]