BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6142933)

  • 1. Effects of iontophoretically released amino acids and amines on primate spinothalamic tract cells.
    Willcockson WS; Chung JM; Hori Y; Lee KH; Willis WD
    J Neurosci; 1984 Mar; 4(3):732-40. PubMed ID: 6142933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of iontophoretically released peptides on primate spinothalamic tract cells.
    Willcockson WS; Chung JM; Hori Y; Lee KH; Willis WD
    J Neurosci; 1984 Mar; 4(3):741-50. PubMed ID: 6200579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition.
    Lin Q; Peng YB; Willis WD
    J Neurophysiol; 1996 Jan; 75(1):109-23. PubMed ID: 8822545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of primate spinothalamic tract neurons by spinal glycine and GABA is modulated by guanosine 3',5'-cyclic monophosphate.
    Lin Q; Wu J; Peng YB; Cui M; Willis WD
    J Neurophysiol; 1999 Mar; 81(3):1095-103. PubMed ID: 10085336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of primate spinothalamic tract neurons by spinal glycine and GABA is reduced during central sensitization.
    Lin Q; Peng YB; Willis WD
    J Neurophysiol; 1996 Aug; 76(2):1005-14. PubMed ID: 8871215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological actions of norepinephrine in rat lateral hypothalamus. I. Norepinephrine-induced modulation of LH neuronal responsiveness to afferent synaptic inputs and putative neurotransmitters.
    Sessler FM; Cheng JT; Waterhouse BD
    Brain Res; 1988 Apr; 446(1):77-89. PubMed ID: 2897229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of iontophoretic application of putative neurotransmitters on the electrical activity of rat mediobasal hypothalamic neurons in relation to their steroid sensitivity.
    Mandelbrod I; Feldman S; Werman R
    Brain Res; 1983 Aug; 272(1):115-27. PubMed ID: 6137260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycine and GABAA antagonists reduce the inhibition of primate spinothalamic tract neurons produced by stimulation in periaqueductal gray.
    Lin Q; Peng Y; Willis WD
    Brain Res; 1994 Aug; 654(2):286-302. PubMed ID: 7987678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depression of primate spinothalamic tract neurons by iontophoretic application of 5-hydroxytryptamine.
    Jordan LM; Kenshalo DR; Martin FR; Haber LH; Willis WD
    Pain; 1978 Aug; 5(2):135-142. PubMed ID: 99715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estrogen effects on neuronal responsiveness to electrical and neurotransmitter stimulation: an in vitro study on the ventromedial nucleus of the hypothalamus.
    Kow LM; Pfaff DW
    Brain Res; 1985 Nov; 347(1):1-10. PubMed ID: 2864983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of the responses of primate spinothalamic neurons to mechanical stimulation by excitatory amino acids and an N-methyl-D-aspartate antagonist.
    Dougherty PM; Willis WD
    Brain Res; 1991 Feb; 542(1):15-22. PubMed ID: 1675920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced responses of spinothalamic tract neurons to excitatory amino acids accompany capsaicin-induced sensitization in the monkey.
    Dougherty PM; Willis WD
    J Neurosci; 1992 Mar; 12(3):883-94. PubMed ID: 1545244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate-immunoreactive terminals synapse on primate spinothalamic tract cells.
    Westlund KN; Carlton SM; Zhang D; Willis WD
    J Comp Neurol; 1992 Aug; 322(4):519-27. PubMed ID: 1357007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABA-immunoreactive terminals synapse on primate spinothalamic tract cells.
    Carlton SM; Westlund KN; Zhang D; Willis WD
    J Comp Neurol; 1992 Aug; 322(4):528-37. PubMed ID: 1401247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiopulmonary sympathetic input excites primate cuneothalamic neurons: comparison with spinothalamic tract neurons.
    Chandler MJ; Zhang J; Foreman RD
    J Neurophysiol; 1998 Aug; 80(2):628-37. PubMed ID: 9705456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microelectrophoretic application of putative neurotransmitters onto various types of bulbar respiratory neurons.
    Fallert M; Böhmer G; Dinse HR; Sommer TJ; Bittner A
    Arch Ital Biol; 1979 Jan; 117(1):1-12. PubMed ID: 45299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide-mediated spinal disinhibition contributes to the sensitization of primate spinothalamic tract neurons.
    Lin Q; Wu J; Peng YB; Cui M; Willis WD
    J Neurophysiol; 1999 Mar; 81(3):1086-94. PubMed ID: 10085335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groups II and III metabotropic glutamate receptors differentially modulate brief and prolonged nociception in primate STT cells.
    Neugebauer V; Chen PS; Willis WD
    J Neurophysiol; 2000 Dec; 84(6):2998-3009. PubMed ID: 11110827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of iontophoretically applied neurotransmitters on mouse brain neurones in culture.
    Bonkowski L; Dryden WF
    Neuropharmacology; 1977 Feb; 16(2):89-97. PubMed ID: 14312
    [No Abstract]   [Full Text] [Related]  

  • 20. Inner plexiform circuits in the carp retina: effects of cholinergic agonists, GABA, and substance P on the ganglion cells.
    Glickman RD; Adolph AR; Dowling JE
    Brain Res; 1982 Feb; 234(1):81-99. PubMed ID: 6174185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.