These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 6143569)

  • 1. Purification and characterization of beta-leptinotarsin-h, an activator of presynaptic calcium channels.
    Crosland RD; Hsiao TH; McClure WO
    Biochemistry; 1984 Feb; 23(4):734-41. PubMed ID: 6143569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of beta-leptinotarsin-h and the effects of calcium flux antagonists on its activity.
    Crosland RD; Fitch RW; Hines HB
    Toxicon; 2005 Jun; 45(7):829-41. PubMed ID: 15904678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leptinotarsin-D, a neurotoxic protein, evokes neurotransmitter release from, and calcium flux into, isolated electric organ nerve terminals.
    Miljanich GP; Yeager RE; Hsiao TH
    J Neurobiol; 1988 Jun; 19(4):373-86. PubMed ID: 2454289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leptinotarsin: a presynaptic neurotoxin that stimulates release of acetylcholine.
    McClure WO; Abbott BC; Baxter DE; Hsiao TH; Satin LS; Siger A; Yoshino JE
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):1219-23. PubMed ID: 6928672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leptinotoxin-h action in synaptosomes and neurosecretory cells: stimulation of neurotransmitter release.
    Madeddu L; Saito I; Hsiao TH; Meldolesi J
    J Neurochem; 1985 Dec; 45(6):1719-30. PubMed ID: 2414401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leptinotoxin-h action in synaptosomes, neurosecretory cells, and artificial membranes: stimulation of ion fluxes.
    Madeddu L; Pozzan T; Robello M; Rolandi R; Hsiao TH; Meldolesi J
    J Neurochem; 1985 Dec; 45(6):1708-18. PubMed ID: 2414400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of liposomes containing various divalent cations on the release of acetylcholine from synaptosomes.
    Crosland RD; Martin JV; McClure WO
    J Neurochem; 1983 Mar; 40(3):681-7. PubMed ID: 6827267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release of acetylcholine from rat brain synaptosomes by various agents in the absence of external calcium ions.
    Adam-Vizi V; Ligeti E
    J Physiol; 1984 Aug; 353():505-21. PubMed ID: 6090643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of acetylcholine from rat brain synaptosomes stimulated with leptinotarsin, a new neurotoxin.
    Yoshino JE; Baxter DE; Hsiao TH; McClure WO
    J Neurochem; 1980 Mar; 34(3):635-42. PubMed ID: 7354338
    [No Abstract]   [Full Text] [Related]  

  • 10. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain.
    Drapeau P; Nachshen DA
    J Physiol; 1984 Mar; 348():493-510. PubMed ID: 6325673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cobalt-ions dissociate between calcium uptake through voltage-dependent sodium and calcium channels in synaptosomes.
    Meyer EM; Cooper JR
    Brain Res; 1983 Apr; 265(1):173-6. PubMed ID: 6133587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-sensitive Ca2+ channels in rat brain neocortical noradrenergic nerve terminals. Different sensitivity to inorganic and organic Ca2+ channel antagonists.
    Reimann W; Köllhofer U
    Pharmacology; 1988; 36(4):249-57. PubMed ID: 2454498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of dopamine and noradrenaline release and of intracellular Ca2+ concentration by presynaptic glutamate receptors in hippocampus.
    Malva JO; Carvalho AP; Carvalho CM
    Br J Pharmacol; 1994 Dec; 113(4):1439-47. PubMed ID: 7534187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete purification of beta-bungarotoxin. Characterization of its action and that of tityustoxin on synaptosomal accumulation and release of acetylcholine.
    Spokes JW; Dolly JO
    Biochim Biophys Acta; 1980 Feb; 596(1):81-93. PubMed ID: 7353009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of potassium, veratridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro.
    Blaustein MP
    J Physiol; 1975 Jun; 247(3):617-55. PubMed ID: 238033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxins that affect voltage-dependent calcium channels.
    Hamilton SL; Perez M
    Biochem Pharmacol; 1987 Oct; 36(20):3325-9. PubMed ID: 2445345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and pharmacological correlates of calcium antagonist receptors.
    Wagner JA; Reynolds IJ; Snyder SH
    J Cardiovasc Pharmacol; 1987; 10 Suppl 10():S1-9. PubMed ID: 2455102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of ion permeation pathway in the N-type Ca2+ channel.
    Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y
    J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the calcium-dependent stimulation of transmitter release by 4-aminopyridine in synaptosomes.
    Tapia R; Sitges M; Morales E
    Brain Res; 1985 Dec; 361(1-2):373-82. PubMed ID: 2867810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Latrotoxin channels. Permeability for divalent cations].
    Lishko VK; Saĭchenko EA; Storchak LG; Gimmerl'reĭkh NG
    Biokhimiia; 1990 Sep; 55(9):1578-83. PubMed ID: 1706630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.