These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 6143639)

  • 1. A comprehensive description of brush border membrane development applying to enterocytes taken from a wide variety of mammalian species.
    Smith MW; Patterson JY; Peacock MA
    Comp Biochem Physiol A Comp Physiol; 1984; 77(4):655-62. PubMed ID: 6143639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative aspects of microvillus development in avian and mammalian enterocytes.
    Smith MW; Peacock MA
    Comp Biochem Physiol A Comp Physiol; 1989; 93(3):617-22. PubMed ID: 2569378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing the hypothesis that crypt size determines the rate of enterocyte development in neonatal mice.
    Smith MW; Peacock MA; Lund EK
    Comp Biochem Physiol A Comp Physiol; 1986; 84(3):511-5. PubMed ID: 2874930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positional dependence of enterocyte membrane potential in hamster and rabbit enterocytes.
    Cremaschi D; James PS; Meyer G; Smith MW
    Comp Biochem Physiol A Comp Physiol; 1984; 78(4):661-6. PubMed ID: 6149040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of diet upon enterocyte differentiation in the rat jejunum.
    King IS; Paterson JY; Peacock MA; Smith MW; Syme G
    J Physiol; 1983 Nov; 344():465-81. PubMed ID: 6140311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual control over microvillus elongation during enterocyte development.
    Smith MW; Brown D
    Comp Biochem Physiol A Comp Physiol; 1989; 93(3):623-8. PubMed ID: 2569379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Ultrastructural changes in the cell center during enterocyte differentiation in the mouse].
    Komarova IuA; Vorob'ev IA
    Tsitologiia; 1993; 35(5):36-43. PubMed ID: 8379009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parental spleen cells accelerate the development of intestinal brush border structure and function in neonatal mice.
    Lund EK; Smith MW; Peacock MA
    Comp Biochem Physiol A Comp Physiol; 1986; 85(1):175-81. PubMed ID: 2876814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-dependent D-glucose transport in brush-border membrane vesicles from isolated rat small intestinal villus and crypt epithelial cells.
    Freeman HJ; Johnston G; Quamme GA
    Can J Physiol Pharmacol; 1987 Jun; 65(6):1213-9. PubMed ID: 3621069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of genetic selection on growth rate and intestinal structure in the domestic fowl (Gallus domesticus).
    Smith MW; Mitchell MA; Peacock MA
    Comp Biochem Physiol A Comp Physiol; 1990; 97(1):57-63. PubMed ID: 1979266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose transport and microvillus membrane physical properties along the crypt-villus axis of the rabbit.
    Meddings JB; DeSouza D; Goel M; Thiesen S
    J Clin Invest; 1990 Apr; 85(4):1099-107. PubMed ID: 2318967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular potassium as a possible inducer of amino acid transport across hamster jejunal enterocytes.
    Cremaschi D; James PS; Meyer G; Rossetti C; Smith MW
    J Physiol; 1986 Jun; 375():107-19. PubMed ID: 3795055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enteric disease in early childhood inhibits microvillus expression by potential stem cells.
    Borg M; Phillips AD; Smith MW; Brown D
    Clin Sci (Lond); 1993 Apr; 84(4):377-9. PubMed ID: 8482042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enterocyte digestive enzyme activity along the crypt-villus and longitudinal axes in the neonatal pig small intestine.
    Fan MZ; Stoll B; Jiang R; Burrin DG
    J Anim Sci; 2001 Feb; 79(2):371-81. PubMed ID: 11219446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partitioning of paracellular conductance along the ileal crypt-villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationships.
    Marcial MA; Carlson SL; Madara JL
    J Membr Biol; 1984; 80(1):59-70. PubMed ID: 6481793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in piglet small intestinal structure at weaning.
    Hampson DJ
    Res Vet Sci; 1986 Jan; 40(1):32-40. PubMed ID: 3704321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sucrase-isomaltase gene expression along crypt-villus axis of human small intestine is regulated at level of mRNA abundance.
    Traber PG; Yu L; Wu GD; Judge TA
    Am J Physiol; 1992 Jan; 262(1 Pt 1):G123-30. PubMed ID: 1733257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms involved in the development of the small intestine mucosal layer in postnatal piglets.
    Skrzypek TH; Kazimierczak W; Skrzypek H; Valverde Piedra JL; Godlewski MM; Zabielski R
    J Physiol Pharmacol; 2018 Feb; 69(1):127-138. PubMed ID: 29769429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphometry of the small intestinal enterocytes of the fasted rat and the effects of colchicine.
    Buschmann RJ
    Cell Tissue Res; 1983; 231(2):289-99. PubMed ID: 6850805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galactose increases microvillus development in mouse jejunal enterocytes.
    Smith MW; Peacock MA; James PS
    Comp Biochem Physiol A Comp Physiol; 1991; 100(2):489-93. PubMed ID: 1685965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.