BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6143830)

  • 21. Comparison of ATP-dependent calcium transport and calcium-activated ATPase activities of cardiac sarcoplasmic reticulum and sarcolemma from rats of various ages.
    Narayanan N
    Mech Ageing Dev; 1987 Apr; 38(2):127-43. PubMed ID: 2955175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of phosphoryl group transfer.
    Faller LD; Nagy AK; Kane DJ; Farley RA
    Ann N Y Acad Sci; 2003 Apr; 986():275-7. PubMed ID: 12763820
    [No Abstract]   [Full Text] [Related]  

  • 23. Intrinsic regulation of substrate fluxes and energy conservation in Ca2+-ATPase.
    de Meis L; Inesi G
    FEBS Lett; 1985 Jun; 185(1):135-8. PubMed ID: 3158543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ATP regulation of calcium binding in Ca2+-ATPase molecules of the sarcoplasmic reticulum.
    Nakamura J; Tajima G; Sato C
    Ann N Y Acad Sci; 2003 Apr; 986():341-3. PubMed ID: 12763845
    [No Abstract]   [Full Text] [Related]  

  • 25. On the mechanism of ATP-driven Ca2+ transport by the calcium ATPase of sarcoplasmic reticulum.
    Jencks WP
    Ann N Y Acad Sci; 1992 Nov; 671():49-56; discussion 56-7. PubMed ID: 1288349
    [No Abstract]   [Full Text] [Related]  

  • 26. Application of the principle of linked functions to ATP-driven ion pumps: kinetics of activation by ATP.
    Reynolds JA; Johnson EA; Tanford C
    Proc Natl Acad Sci U S A; 1985 Jun; 82(11):3658-61. PubMed ID: 2987939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of H2O activity in the free or phosphorylated catalytic site of Ca2+-ATPase.
    Dupont Y; Pougeois R
    FEBS Lett; 1983 May; 156(1):93-8. PubMed ID: 6221945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of ATP with the active sites of ATPases in heart sarcolemma. Role of the hydroxylic group in position two on the ribose moiety.
    Monosíková R; Ziegelhöffer A; Breier A
    Gen Physiol Biophys; 1987 Apr; 6(2):193-6. PubMed ID: 2820838
    [No Abstract]   [Full Text] [Related]  

  • 29. Coupling of hydrolysis of ATP and the transport of Ca2+ by the calcium ATPase of sarcoplasmic reticulum.
    Jencks WP
    Biochem Soc Trans; 1992 Aug; 20(3):555-9. PubMed ID: 1426591
    [No Abstract]   [Full Text] [Related]  

  • 30. Sarcoplasmic reticulum Ca(2+)-ATPase of sea cucumber smooth muscle: regulation by K(+) and ATP.
    Landeira-Fernandez AM; Galina A; Jennings P; Montero-Lomeli M; de Meis L
    Comp Biochem Physiol A Mol Integr Physiol; 2000 Jun; 126(2):263-74. PubMed ID: 10936766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of heat produced during ATP hydrolysis by the sarcoplasmic reticulum Ca(2+)-ATPase in the absence of a Ca2+ gradient.
    de Meis L
    Biochem Biophys Res Commun; 1998 Feb; 243(2):598-600. PubMed ID: 9480854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase.
    Fukushima Y; Yamada S; Nakao M
    J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of ATP from Ca2+ gradient by sarcoplasmic reticulum Ca2+ transport ATPase.
    Fassold E; Hasselbach W
    Methods Enzymol; 1988; 157():220-8. PubMed ID: 2976458
    [No Abstract]   [Full Text] [Related]  

  • 34. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ATP-utilizing systems in the squid axons: a review on the biochemical aspects of ion-transport.
    Matsumura F; Clark JM
    Prog Neurobiol; 1982; 18(4):231-55. PubMed ID: 6128766
    [No Abstract]   [Full Text] [Related]  

  • 36. Unidirectional calcium and nucleotide fluxes in sarcoplasmic reticulum. I. Interpretation of flux ratios for different reaction schemes.
    Feher JJ
    Biophys J; 1984 Jun; 45(6):1125-33. PubMed ID: 6234946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca2+ binding to sarcoplasmic reticulum ATPase phosphorylated by Pi reveals four thapsigargin-sensitive Ca2+ sites in the presence of ADP.
    Vieyra A; Mintz E; Lowe J; Guillain F
    Biochim Biophys Acta; 2004 Dec; 1667(2):103-13. PubMed ID: 15581845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of local anesthetics on calcium activated ATPase and its partial reaction with fragmented sarcoplasmic reticulum from bullfrog and rabbit skeletal muscle.
    Kurebayashi N; Ogawa Y; Harafuji H
    J Biochem; 1982 Sep; 92(3):915-20. PubMed ID: 6216248
    [No Abstract]   [Full Text] [Related]  

  • 39. Action of the mitochondrial ATPase inhibitor protein on the Ca2+-ATPase of sarcoplasmic reticulum.
    de Meis L; Tuena de Gómez-Puyou M; Gómez-Puyou A
    Biochem Biophys Res Commun; 1983 Feb; 111(1):274-9. PubMed ID: 6219671
    [No Abstract]   [Full Text] [Related]  

  • 40. [Effect of myocardial ischemia on the ATPase system].
    Shkolovoĭ VV
    Vopr Med Khim; 1984; 30(5):41-3. PubMed ID: 6152084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.