BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6143830)

  • 41. The effect of a monoclonal antibody on specific steps of the reaction sequence of the (Ca(2+)-Mg(2+))-ATPase from sarcoplasmic reticulum.
    Mata AM; Colyer J; Michelangeli F; Lee AG; East JM
    Biochem Soc Trans; 1991 Apr; 19(2):205S. PubMed ID: 1832396
    [No Abstract]   [Full Text] [Related]  

  • 42. Differential alterations in ATP-supported calcium transport activities of sarcoplasmic reticulum and sarcolemma of aging myocardium.
    Narayanan N
    Biochim Biophys Acta; 1981 Dec; 678(3):442-59. PubMed ID: 6119116
    [No Abstract]   [Full Text] [Related]  

  • 43. [Systems of electromechanical coupling].
    Esyrev OV
    Ukr Biokhim Zh (1978); 1982; 54(2):217-31. PubMed ID: 6123170
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trans-magnesium dependency of ATP-dependent calcium uptake into sarcoplasmic reticulum of skeletal muscle.
    Morsy FA; Shamoo AE
    Magnesium; 1985; 4(4):182-7. PubMed ID: 2934589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Slow transition of phosphoenzyme from ADP-sensitive to ADP-insensitive forms in solubilized Ca2+, Mg2+-ATPase of sarcoplasmic reticulum: evidence for retarded dissociation of Ca2+ from the phosphoenzyme.
    Takakuwa Y; Kanazawa T
    Biochem Biophys Res Commun; 1979 Jun; 88(4):1209-16. PubMed ID: 157738
    [No Abstract]   [Full Text] [Related]  

  • 46. The effect of anoxia on membrane-bound ATPase and K+-p-nitrophatase activities in the rabbit heart.
    Nagatomo T; Jarmakani JM; Philipson KD; Nakazawa M
    J Mol Cell Cardiol; 1978 Oct; 10(10):981-9. PubMed ID: 214568
    [No Abstract]   [Full Text] [Related]  

  • 47. Disruptiin of energy transductiin in sarcoplasmic reticulum by trypsin cleavage of (Ca2+ + Mg2+)-ATPase.
    Scott TL; Shamoo AE
    J Membr Biol; 1982; 64(3):137-44. PubMed ID: 6120240
    [No Abstract]   [Full Text] [Related]  

  • 48. Intermolecular conformational coupling and free energy exchange enhance the catalytic efficiency of cardiac muscle SERCA2a following the relief of phospholamban inhibition.
    Mahaney JE; Albers RW; Waggoner JR; Kutchai HC; Froehlich JP
    Biochemistry; 2005 May; 44(21):7713-24. PubMed ID: 15909986
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exchange between inorganic phosphate and adenosine triphosphate in (Na+,K+)-ATPase.
    Gonçalves de Moraes VL; De Meis L
    Biochim Biophys Acta; 1982 May; 688(1):131-7. PubMed ID: 6284227
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of Ca++ and Mg++ on the vanadate inhibition of the Ca++- ATPase from pig heart sarcoplasmic reticulum.
    Wierichs R; Hagenmeyer A; Bader H
    Biochem Biophys Res Commun; 1980 Feb; 92(4):1124-9. PubMed ID: 6445193
    [No Abstract]   [Full Text] [Related]  

  • 51. Regulation of the calcium pump of cardiac sarcoplasmic reticulum. Interactive roles of potassium and ATP on the phosphoprotein intermediate of the (K+,Ca2+)-ATPase.
    Jones LR; Besch HR; Watanabe AM
    J Biol Chem; 1978 Mar; 253(5):1643-53. PubMed ID: 146716
    [No Abstract]   [Full Text] [Related]  

  • 52. Effect of halothane on the calcium activated ATPase reaction of fragmented sarcoplasmic reticulum in reference to the Ca-releasing action.
    Kurebayashi N; Ogawa Y
    J Biochem; 1982 Sep; 92(3):907-13. PubMed ID: 6216247
    [No Abstract]   [Full Text] [Related]  

  • 53. Modification of the ATP binding site of the Ca2+ -ATPase from sarcoplasmic reticulum by fluorescein isothiocyanate.
    Pick U; Bassilian S
    FEBS Lett; 1981 Jan; 123(1):127-30. PubMed ID: 6451451
    [No Abstract]   [Full Text] [Related]  

  • 54. Ca2+ uptake by cardiac sarcoplasmic reticulum ATPase in situ strongly depends on bound creatine kinase.
    Minajeva A; Ventura-Clapier R; Veksler V
    Pflugers Arch; 1996 Sep; 432(5):904-12. PubMed ID: 8772142
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of the peptide region of the calcium and ATP sites of the calcium pump protein.
    Shamoo AE; Joshi NB
    Prog Clin Biol Res; 1988; 252():141-8. PubMed ID: 2450358
    [No Abstract]   [Full Text] [Related]  

  • 56. Stoichiometry of tight binding of magnesium and fluoride to phosphorylation and high-affinity binding of ATP, vanadate, and calcium in the sarcoplasmic reticulum Ca(2+)-ATPase.
    Daiho T; Kubota T; Kanazawa T
    Biochemistry; 1993 Sep; 32(38):10021-6. PubMed ID: 8399129
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The MgATPase activity of rat cardiac sarcoplasmic reticulum is a function of the calcium ATPase protein.
    Taffet GE; Tate CA
    Arch Biochem Biophys; 1992 Dec; 299(2):287-94. PubMed ID: 1444468
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Effect of diet on transport ATPase activity in myocardial and liver membranes].
    Sharmanov TSh; Takhtaev FKh; Tazhibaev ShS; Mamyrbaev AA; Piven' VN
    Vopr Med Khim; 1985; 31(5):26-9. PubMed ID: 3004033
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of magnesium on cardiac excitation-contraction coupling.
    Michailova AP; Belik ME; McCulloch AD
    J Am Coll Nutr; 2004 Oct; 23(5):514S-517S. PubMed ID: 15466954
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum.
    de Meis L; Vianna AL
    Annu Rev Biochem; 1979; 48():275-92. PubMed ID: 157714
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.