These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6143830)

  • 61. A possible mechanism for the Ca-ATPase of sarcoplasmic reticulum.
    Wiggins PM
    J Theor Biol; 1982 Dec; 99(4):645-64. PubMed ID: 6223183
    [No Abstract]   [Full Text] [Related]  

  • 62. Transient kinetics of sarcoplasmic reticulum CA2+ + Mg2+ ATPase studied by fluorescence.
    Dupont Y; Leigh JB
    Nature; 1978 Jun; 273(5661):396-8. PubMed ID: 149252
    [No Abstract]   [Full Text] [Related]  

  • 63. Activity of Na+/K+-ATPase and of Ca++-ATPase under the action of adenosine triphosphate in experimental myocardial hypertrophy.
    Moisin C; Balta N; Filcescu V; Dumitriu IF; Stoian G; Petec G
    Rom J Physiol; 1998; 35(3-4):303-11. PubMed ID: 11061329
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of isoproterenol on the kinetic properties of (Ca2+, Mg2+)-adenosine triphosphatase (ATPase) from rat cardiac sarcoplasmic reticulum.
    Leone FA; Curti C; Mello de Oliveira JA
    Cell Mol Biol; 1985; 31(3):235-40. PubMed ID: 3160466
    [No Abstract]   [Full Text] [Related]  

  • 65. Comparison of ATP binding in the active sites of (Na+ + K(+)-ATPase, Mg(2+)-ATPase and Ca(2+)-ATPase with low affinity to calcium from cardiac sarcolemma.
    Monosíková R; Breier A; Ziegelhöffer A; Sima F
    Bratisl Lek Listy; 1991; 92(3-4):142-5. PubMed ID: 1851462
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fe(2+)-catalyzed oxidation and cleavage of sarcoplasmic reticulum ATPase reveals Mg(2+) and Mg(2+)-ATP sites.
    Hua S; Inesi G; Nomura H; Toyoshima C
    Biochemistry; 2002 Sep; 41(38):11405-10. PubMed ID: 12234183
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Reaction of a carbodiimide adduct of ATP at the active site of sarcoplasmic reticulum calcium ATPase.
    Murphy AJ
    Biochemistry; 1990 Dec; 29(51):11236-42. PubMed ID: 2148693
    [TBL] [Abstract][Full Text] [Related]  

  • 68. ATP-induced conformational transitions of the Ca2+-ATPase of sarcoplasmic reticulum.
    Dupont Y; Bennett N; Lacapere JJ
    Ann N Y Acad Sci; 1982; 402():569-72. PubMed ID: 6220658
    [No Abstract]   [Full Text] [Related]  

  • 69. Catalytic activity and heat production by the Ca(2+)-ATPase from sea cucumber (Ludwigothurea grisea) longitudinal smooth muscle: modulation by monovalent cations.
    Landeira-Fernandez AM; Galina A; de Meis L
    J Exp Biol; 2000 Dec; 203(Pt 23):3613-9. PubMed ID: 11060222
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate.
    Winkler F; Suko J
    Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259
    [No Abstract]   [Full Text] [Related]  

  • 71. Undirectional calcium and nucleotide fluxes in cardiac sarcoplasmic reticulum. II. Experimental results.
    Feher JJ; Briggs FN
    Biophys J; 1984 Jun; 45(6):1135-44. PubMed ID: 6234947
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The role of Mg2+ and Ca2+ in the simultaneous binding of vanadate and ATP at the phosphorylation site of sarcoplasmic reticulum Ca2+-ATPase.
    Andersen JP; Møller JV
    Biochim Biophys Acta; 1985 Apr; 815(1):9-15. PubMed ID: 3157403
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structural changes of the sarcoplasmic reticulum Ca(II)-ATPase nucleotide binding domain by pH and La(III).
    Merino JM; Henao F; Gutiérrez-Merino C
    Arch Biochem Biophys; 1997 Dec; 348(1):152-6. PubMed ID: 9390185
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of divalent cations bound to the catalytic site on ATP-induced conformational changes in the sarcoplasmic reticulum Ca(2+)-ATPase: stopped-flow analysis of the fluorescence of N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine attached to cysteine-674.
    Suzuki H; Nakamura S; Kanazawa T
    Biochemistry; 1994 Jul; 33(27):8240-6. PubMed ID: 8031758
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues.
    Toyoshima C; Nomura H; Tsuda T
    Nature; 2004 Nov; 432(7015):361-8. PubMed ID: 15448704
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [ATPase activity and binding of calcium by sarcoplasmic reticulum of the myocardium in coronary insufficiency].
    Frol'kis RA; Mkhitarian LS
    Vopr Med Khim; 1983; 29(3):38-42. PubMed ID: 6224347
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Influence of global ischemia on the sarcolemmal ATPases in the rat heart.
    Vrbjar N; Dzurba A; Ziegelhöffer A
    Mol Cell Biochem; 1995 Jun 7-21; 147(1-2):99-103. PubMed ID: 7494561
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The utilization of binding energy in coupled vectorial processes.
    Jencks WP
    Adv Enzymol Relat Areas Mol Biol; 1980; 51():75-106. PubMed ID: 6255774
    [No Abstract]   [Full Text] [Related]  

  • 79. Calcium-binding rate and capacity of cardiac sarcoplasmic reticulum.
    Levitsky DO; Benevolensky DS; Levchenko TS; Smirnov VN; Chazov EI
    J Mol Cell Cardiol; 1981 Sep; 13(9):785-96. PubMed ID: 6271976
    [No Abstract]   [Full Text] [Related]  

  • 80. High energy phosphate of the myocardium: concentration versus free energy change.
    Kammermeier H
    Basic Res Cardiol; 1987; 82 Suppl 2():31-6. PubMed ID: 2959262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.