BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6144310)

  • 1. Transport of amino acids for glutathione biosynthesis in human and dog red cells.
    Ellory JC; Preston RL; Osotimehin B; Young JD
    Biomed Biochim Acta; 1983; 42(11-12):S48-52. PubMed ID: 6144310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variant of canine erythrocytes with high potassium content and lack of glutathione accumulation.
    Fujise H; Mori M; Ogawa E; Maede Y
    Am J Vet Res; 1993 Apr; 54(4):602-6. PubMed ID: 8097905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of L-[14C]cystine and L-[14C]cysteine by subtypes of high affinity glutamate transporters over-expressed in HEK cells.
    Hayes D; Wiessner M; Rauen T; McBean GJ
    Neurochem Int; 2005 Jun; 46(8):585-94. PubMed ID: 15863236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assimilation of alpha-glutamyl-peptides by human erythrocytes. A possible means of glutamate supply for glutathione synthesis.
    King GF; Kuchel PW
    Biochem J; 1985 May; 227(3):833-42. PubMed ID: 2860897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison in normal individuals and sickle cell patients of reduced glutathione precursors and their transport between plasma and red cells.
    Kiessling K; Roberts N; Gibson JS; Ellory JC
    Hematol J; 2000; 1(4):243-9. PubMed ID: 11920197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The biosynthesis of glutathione in human erythrocytes (author's transl)].
    Heinle H; Sawatzki G; Wendel A
    Hoppe Seylers Z Physiol Chem; 1976 Nov; 357(11):1451-8. PubMed ID: 12076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase of Na+ gradient-dependent L-glutamate and L-aspartate transport in high K+ dog erythrocytes associated with high activity of (Na+, K+)-ATPase.
    Inaba M; Maede Y
    J Biol Chem; 1984 Jan; 259(1):312-7. PubMed ID: 6142884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glutamine on glutathione kinetics in vivo in dogs.
    Humbert B; Nguyen P; Martin L; Dumon H; Vallette G; Maugère P; Darmaun D
    J Nutr Biochem; 2007 Jan; 18(1):10-6. PubMed ID: 16563721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hereditary high concentration of glutathione in canine erythrocytes associated with high accumulation of glutamate, glutamine, and aspartate.
    Maede Y; Kasai N; Taniguchi N
    Blood; 1982 May; 59(5):883-9. PubMed ID: 6122476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase of Na-K-ATPase activity, glutamate, and aspartate uptake in dog erythrocytes associated with hereditary high accumulation of GSH, glutamate, glutamine, and aspartate.
    Maede Y; Inaba M; Taniguchi N
    Blood; 1983 Mar; 61(3):493-9. PubMed ID: 6297638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of several amino acid transports and glutamine metabolism in MOLT4 human T4 leukemia cells.
    Ochiai H; Higa K; Hishiyama N; Hisamatsu S; Fujise H
    Clin Lab Haematol; 2006 Dec; 28(6):399-404. PubMed ID: 17105494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of glutamine and glutamate transport in rat lung plasma membrane vesicles.
    Pan M; Fischer CP; Wasa M; Bode BP; Souba WW
    J Surg Res; 1997 May; 69(2):418-24. PubMed ID: 9224417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship of in vivo erythrocyte glutathione flux to the oxidized glutathione transport system.
    Smith JE
    J Lab Clin Med; 1974 Mar; 83(3):444-50. PubMed ID: 4812318
    [No Abstract]   [Full Text] [Related]  

  • 14. Glutamine stimulates amino acid transport during ischemia-reperfusion in human intestinal epithelial cells.
    Wasa M; Soh H; Shimizu Y; Fukuzawa M
    J Surg Res; 2005 Jan; 123(1):75-81. PubMed ID: 15652953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Assay and normal levels of L-glutamate-L-cysteine-gamma-ligase (E.C. 6.3.2.2) in human erythrocytes; biosynthesis of glutathione V].
    Wendel A; Gumboldt G; Hahn R
    Z Klin Chem Klin Biochem; 1975 Apr; 13(4):157-61. PubMed ID: 1154827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multicomponent analysis of amino acid transport systems in human lymphocytes. 1. Kinetic parameters of the A and L systems and pathways of uptake of naturally occurring amino acids in blood lymphocytes.
    Segel GB; Simon W; Lichtman MA
    J Cell Physiol; 1983 Sep; 116(3):372-8. PubMed ID: 6604062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na-dependent glutamate transport in high K and high glutathione (HK/HG) and high K and low glutathione (HK/LG) dog red blood cells.
    Fujise H; Hamada Y; Mori M; Ochiai H
    Biochim Biophys Acta; 1995 Oct; 1239(1):22-6. PubMed ID: 7548139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of glutamine and glutathione via gamma-glutamyltranspeptidase and glutamate transport in Helicobacter pylori: possible significance in the pathophysiology of the organism.
    Shibayama K; Wachino J; Arakawa Y; Saidijam M; Rutherford NG; Henderson PJ
    Mol Microbiol; 2007 Apr; 64(2):396-406. PubMed ID: 17381553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of amino acids between plasma and red blood cells in the dog.
    Elwyn DH
    Fed Proc; 1966; 25(3):854-61. PubMed ID: 5941009
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of transport systems for cysteine, lysine, alanine, and leucine in wool follicles of sheep.
    Thomas N; Tivey DR; Penno NM; Nattrass G; Hynd PI
    J Anim Sci; 2007 Sep; 85(9):2205-13. PubMed ID: 17504964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.