These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 6144325)

  • 1. The effect of non-permissive temperature on met-tRNA synthetase in Saccharomyces cerevisiae temperature-sensitive mutant ts 7-45.
    Sadnik I; Petersen SJ; Oktay N; McLaughlin CS; Moldave K
    Biochim Biophys Acta; 1984 Jun; 782(2):220-7. PubMed ID: 6144325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of temperature-sensitive mutant ts 187 of Saccharomyces cerevisiae altered in a component required for the initiation of protein synthesis.
    Feinberg B; McLaughlin CS; Moldave K
    J Biol Chem; 1982 Sep; 257(18):10846-51. PubMed ID: 7050121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of polypeptide chain initiation and activity of initiation factor eIF-2 in Chinese-hamster-ovary cell mutants containing temperature-sensitive aminoacyl-tRNA synthetases.
    Austin SA; Pollard JW; Jagus R; Clemens MJ
    Eur J Biochem; 1986 May; 157(1):39-47. PubMed ID: 3519214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of an altered elongation factor in temperature-sensitive mutant ts 7'-14 of Saccharomyces cerevisiae.
    Herrera F; Martinez JA; Moreno N; Sadnik I; McLaughlin CS; Feinberg B; Moldave K
    J Biol Chem; 1984 Dec; 259(23):14347-9. PubMed ID: 6389546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel role for aminoacyl-tRNA synthetases in the regulation of polypeptide chain initiation.
    Pollard JW; Galpine AR; Clemens MJ
    Eur J Biochem; 1989 Jun; 182(1):1-9. PubMed ID: 2543569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of cessation of growth on protein synthesis in a mutant of Chinese hamster ovary cells with a temperature-sensitive leucyl-tRNA synthetase.
    Hutchison JS; Moldave K
    Biochim Biophys Acta; 1982 Jan; 696(1):94-101. PubMed ID: 7082671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear origin of specific yeast mitochondrial aminoacyl-tRNA synthetases.
    Schneller JM; Schneller C; Martin R; Stahl AJ
    Nucleic Acids Res; 1976 May; 3(5):1151-65. PubMed ID: 781620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the effect of ethanol on eukaryotic protein synthesis in vitro.
    David ET; Fischer I; Moldave K
    J Biol Chem; 1983 Jun; 258(12):7702-6. PubMed ID: 6553051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sedimentation behaviour of aminoacyl-tRNA synthetases from mixed lysates of yeast and rabbit liver.
    Mirande M; Pailliez JP; Schwencke J; Waller JP
    Biochim Biophys Acta; 1983 Sep; 747(1-2):71-7. PubMed ID: 6349695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The preparation and characterization of a cell-free system from Saccharomyces cerevisiae that translates natural messenger ribonucleic acid.
    Gasior E; Herrera F; Sadnik I; McLaughlin CS; Moldave K
    J Biol Chem; 1979 May; 254(10):3965-9. PubMed ID: 374404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial protein synthesis in a mammalian cell-line with a temperature-sensitive leucyl-tRNA synthetase.
    Wallace RB; Williams TM; Freeman KB
    Eur J Biochem; 1975 Nov; 59(1):167-73. PubMed ID: 1204605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methionine-and S-adenosyl methionine-mediated repression in a methionyl-transfer ribonucleic-acid synthetase mutant of Saccharomyces cerevisiae.
    Cherest H; Surdin-Kerjan Y; De Robichon-Szulmajster H
    J Bacteriol; 1975 Aug; 123(2):428-35. PubMed ID: 1099067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct nuclear genes for yeast mitochondrial and cytoplasmic methionyl-tRNA synthetases.
    Schneller JM; Schneider C; Stahl AJ
    Biochem Biophys Res Commun; 1978 Dec; 85(4):1392-9. PubMed ID: 84671
    [No Abstract]   [Full Text] [Related]  

  • 14. Polysome metabolism in protein synthesis mutants of yeast.
    Petersen NS; McLaughlin CS
    Mol Gen Genet; 1974 Mar; 129(3):189-200. PubMed ID: 4601263
    [No Abstract]   [Full Text] [Related]  

  • 15. Biosynthesis and transport of yeast mitochondrial phenylalanyl-tRNA synthetase.
    Diatewa M; Stahl AJ
    Nucleic Acids Res; 1981 Dec; 9(23):6293-304. PubMed ID: 7033932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of ribonucleic acid synthesis in eukaryotes. 2. The effect of protein synthesis on the activities of nuclear and total DNA-dependent RNA polymerase in yeast.
    Gross KJ; Pogo AO
    Biochemistry; 1976 May; 15(10):2070-2081. PubMed ID: 776213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enrichment and characterization of the mRNAs of four aminoacyl-tRNA synthetases from yeast.
    Sellami M; Rether B; Gangloff J; Ebel JP; Bonnet J
    Nucleic Acids Res; 1983 May; 11(10):3269-82. PubMed ID: 6344009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further study on association of 5SrRNA-L5 protein complex and methionyl-tRNA to methionyl-tRNA synthetase in the macromolecular aminoacyl-tRNA synthetase complex.
    Ogata K; Ohno R; Morioka S; Terao K
    J Biochem; 1996 Nov; 120(5):869-80. PubMed ID: 8982850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of aminoacyl-tRNA synthetases in high-molecular-weight multienzyme complexes from rat liver.
    Dang CV; Ferguson B; Burke DJ; Garcia V; Yang DC
    Biochim Biophys Acta; 1985 Jul; 829(3):319-26. PubMed ID: 4005265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly.
    Karanasios E; Simader H; Panayotou G; Suck D; Simos G
    J Mol Biol; 2007 Dec; 374(4):1077-90. PubMed ID: 17976650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.