These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 6144371)

  • 1. Calcium uptake and calcium-dependent phosphorylation during development of rat brain neurons in culture.
    Zurgil N; Zisapel N
    Brain Res; 1984 Apr; 315(2):293-303. PubMed ID: 6144371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concerted enhancement of calcium influx, neurotransmitter release and protein phosphorylation by a phorbol ester in cultured brain neurons.
    Zurgil N; Yarom M; Zisapel N
    Neuroscience; 1986 Dec; 19(4):1255-64. PubMed ID: 3822120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-dependent protein phosphorylation and dephosphorylation in intact brain neurons in culture.
    Zurgil N; Zisapel N
    FEBS Lett; 1983 Jun; 156(2):257-61. PubMed ID: 6133781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent inactivation of calcium dependent phosphorylation and neurotransmitter release in cultured rat brain neurons.
    Zurgil N; Zisapel N
    J Basic Clin Physiol Pharmacol; 1991; 2(3):233-41. PubMed ID: 1686727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes.
    Krueger BK; Forn J; Greengard P
    J Biol Chem; 1977 Apr; 252(8):2764-73. PubMed ID: 323254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ergopeptine-sensitive calcium-dependent protein phosphorylation system in the brain.
    Stratford CA; Fisher SK; Ueda T
    J Neurochem; 1984 Mar; 42(3):842-55. PubMed ID: 6141226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic properties of the sodium-calcium exchanger in rat brain synaptosomes.
    Fontana G; Rogowski RS; Blaustein MP
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):349-64. PubMed ID: 7666363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nerve growth cones isolated from fetal rat brain. III. Calcium-dependent protein phosphorylation.
    Katz F; Ellis L; Pfenninger KH
    J Neurosci; 1985 Jun; 5(6):1402-11. PubMed ID: 4009238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition by melatonin of dopamine release from rat hypothalamus: regulation of calcium entry.
    Zisapel N; Laudon M
    Brain Res; 1983 Aug; 272(2):378-81. PubMed ID: 6412963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agonist-dependent Ca2+ and Mn2+ entry dependent on state of filling of Ca2+ stores in aortic smooth muscle cells of the rat.
    Missiaen L; Declerck I; Droogmans G; Plessers L; De Smedt H; Raeymaekers L; Casteels R
    J Physiol; 1990 Aug; 427():171-86. PubMed ID: 2213595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Ca2+ -dependent phosphorylation in viable dispersed brain cells with calmodulin-dependent protein kinase activity in cell-free preparations of rat brain.
    Norling LL; Landt M
    Biochem J; 1985 Dec; 232(3):629-35. PubMed ID: 4091815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-evoked calcium signal stimulates protein phosphorylation/dephosphorylation in astrocytes.
    Neary JT; Laskey R; van Breemen C; Blicharska J; Norenberg LO; Norenberg MD
    Brain Res; 1991 Dec; 566(1-2):89-94. PubMed ID: 1814559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hormone-induced protein phosphorylation. III. regulation of the phosphorylation of the secretagogue-responsive 29,000-dalton protein by both Ca2+ and cAMP in vitro.
    Freedman SD; Jamieson JD
    J Cell Biol; 1982 Dec; 95(3):918-23. PubMed ID: 6296162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of calcium on the endogenous phosphorylation of mouse brain microsomes in vitro.
    Satomi D
    J Biochem; 1977 Dec; 82(6):1695-700. PubMed ID: 599150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na(+)-Ca2+ exchange activity in central nerve endings. II. Relationship between pharmacological blockade by amiloride analogues and dopamine release from tuberoinfundibular hypothalamic neurons.
    Taglialatela M; Canzoniero LM; Cragoe EJ; Di Renzo G; Annunziato L
    Mol Pharmacol; 1990 Sep; 38(3):393-400. PubMed ID: 2402228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Ca2+-dependent dissociation of [3H]dopamine bound to an acidic glycoprotein present in the synaptosomal cytoplasm of rat brain.
    Tsudzuki T
    J Biochem; 1983 Feb; 93(2):599-606. PubMed ID: 6841357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological concentrations of inorganic phosphate affect MgATP-dependent Ca2+ storage and inositol trisphosphate-induced Ca2+ efflux in microsomal vesicles from non-hepatic cells.
    Fulceri R; Bellomo G; Gamberucci A; Romani A; Benedetti A
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):299-306. PubMed ID: 8424767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of tyrosine hydroxylase on at least three sites in rat pheochromocytoma PC12 cells treated with 56 mM K+: determination of the sites on tyrosine hydroxylase phosphorylated by cyclic AMP-dependent and calcium/calmodulin-dependent protein kinases.
    Tachikawa E; Tank AW; Yanagihara N; Mosimann W; Weiner N
    Mol Pharmacol; 1986 Nov; 30(5):476-85. PubMed ID: 2877391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of protein IIIb, a mammalian brain phosphoprotein.
    Huang CK; Browning MD; Greengard P
    J Biol Chem; 1982 Jun; 257(11):6524-8. PubMed ID: 6281275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second messenger-specific protein kinases in a salt-absorbing intestinal epithelium.
    Toskulkao C; Nash NT; Leach K; Rao MC
    Am J Physiol; 1990 May; 258(5 Pt 1):C879-88. PubMed ID: 2159231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.