These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 6144677)

  • 1. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme.
    Moreadith RW; Lehninger AL
    J Biol Chem; 1984 May; 259(10):6215-21. PubMed ID: 6144677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pathway of glutamine and glutamate oxidation in isolated mitochondria from mammalian cells.
    Kovacević Z
    Biochem J; 1971 Dec; 125(3):757-63. PubMed ID: 4401609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification, kinetic behavior, and regulation of NAD(P)+ malic enzyme of tumor mitochondria.
    Moreadith RW; Lehninger AL
    J Biol Chem; 1984 May; 259(10):6222-7. PubMed ID: 6725250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and regulation of hepatoma mitochondrial NAD(P) malic enzyme.
    Teller JK; Fahien LA; Davis JW
    J Biol Chem; 1992 May; 267(15):10423-32. PubMed ID: 1587826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in NAD(P)+-dependent malic enzyme and malate dehydrogenase activities during fibroblast proliferation.
    McKeehan WL; McKeehan KA
    J Cell Physiol; 1982 Feb; 110(2):142-8. PubMed ID: 7068771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate and aspartate transport in rat brain mitochondria.
    Brand MD; Chappell JB
    Biochem J; 1974 May; 140(2):205-10. PubMed ID: 4375961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control and function of the transamination pathways of glutamine oxidation in tumour cells.
    Kovacević Z; Brkljac O; Bajin K
    Biochem J; 1991 Jan; 273(Pt 2)(Pt 2):271-5. PubMed ID: 1991025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm.
    Martin BR; Denton RM
    Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the role of malic enzyme in the rapid oxidation of malate by cod heart mitochondria.
    Skorkowski EF; Aleksandrowicz Z; Scisłowski PW; Swierczyński J
    Comp Biochem Physiol B; 1984; 77(2):379-84. PubMed ID: 6697695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malate-citrate cycle during glycolysis and glutaminolysis in Ehrlich ascites tumor cells.
    Pérez-Rodríguez J; Sánchez-Jiménez F; Márquez FJ; Medina MA; Quesada AR; Núñez de Castro I
    Biochimie; 1987 May; 69(5):469-74. PubMed ID: 3118962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oxidation of glutamine and glutamate in relation to anion transport in enterocyte mitochondria.
    Evered DF; Masola B
    Biochem J; 1984 Mar; 218(2):449-58. PubMed ID: 6143554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transamination pathways influencing L-glutamine and L-glutamate oxidation by rat enterocyte mitochondria and the subcellular localization of L-alanine aminotransferase and L-aspartate aminotransferase.
    Masola B; Peters TJ; Evered DF
    Biochim Biophys Acta; 1985 Nov; 843(1-2):137-43. PubMed ID: 2865979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of malate dehydrogenase activity by glutamate, citrate, alpha-ketoglutarate, and multienzyme interaction.
    Fahien LA; Kmiotek EH; MacDonald MJ; Fibich B; Mandic M
    J Biol Chem; 1988 Aug; 263(22):10687-97. PubMed ID: 2899080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disequilibrium in the malate dehydrogenase reaction in rat liver mitochondria in vivo.
    Heath DF; Phillips JC
    Biochem J; 1972 Apr; 127(3):453-70. PubMed ID: 4342489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of malic enzyme in the malate dependent biosynthesis of progesterone in the mitochondrial fraction of human term placenta.
    Swierczyński J; Klimek J; Zelewski L
    J Steroid Biochem; 1985 Mar; 22(3):415-8. PubMed ID: 3990291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transport of L-cysteinesulfinate in rat liver mitochondria.
    Palmieri F; Stipani I; Iacobazzi V
    Biochim Biophys Acta; 1979 Aug; 555(3):531-46. PubMed ID: 486467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial malic enzymes. An association between NAD(P)+-dependent malic enzyme and cell renewal in Sprague-Dawley rat tissues.
    Nagel WO; Dauchy RT; Sauer LA
    J Biol Chem; 1980 May; 255(9):3849-54. PubMed ID: 7372653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate-malate metabolism in liver mitochondria. A model constructed on the basis of mitochondrial levels of enzymes, specificity, dissociation constants, and stoichiometry of hetero-enzyme complexes.
    Fahien LA; Teller JK
    J Biol Chem; 1992 May; 267(15):10411-22. PubMed ID: 1350279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and properties of the nicotinamide adenine dinucleotide (phosphate)+-dependent malic enzyme in mouse ascites tumor mitochondria.
    Sauer LA; Dauchy RT
    Cancer Res; 1978 Jun; 38(6):1751-6. PubMed ID: 25711
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.