These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 6145319)

  • 1. Pertussis toxin: lessons from biological and biochemical effects in different cells.
    Hewlett EL; Cronin MJ; Moss J; Anderson H; Myers GA; Pearson RD
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():173-82. PubMed ID: 6145319
    [No Abstract]   [Full Text] [Related]  

  • 2. Islet-activating protein, pertussis toxin: a specific uncoupler of receptor-mediated inhibition of adenylate cyclase.
    Ui M; Katada T; Murayama T; Kurose H; Yajima M; Tamura M; Nakamura T; Nogimori K
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():145-51. PubMed ID: 6203340
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanisms and components involved in adenylate cyclase inhibition by hormones.
    Jakobs KH; Aktories K; Schultz G
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():135-43. PubMed ID: 6145317
    [No Abstract]   [Full Text] [Related]  

  • 4. Homology between light-activated photoreceptor phosphodiesterase and hormone-activated adenylate cyclase systems.
    Yamazaki A; Halliday KR; George JS; Nagao S; Kuo CH; Ailsworth KS; Bitensky MW
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1985; 19():113-24. PubMed ID: 2988294
    [No Abstract]   [Full Text] [Related]  

  • 5. Progesterone inhibition of Xenopus oocyte adenylate cyclase is not mediated via the Bordetella pertussis toxin substrate.
    Sadler SE; Maller JL; Cooper DM
    Mol Pharmacol; 1984 Nov; 26(3):526-31. PubMed ID: 6541752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional uncoupling of muscarinic receptors from adenylate cyclase in rat cardiac membranes by the active component of islet-activating protein, pertussis toxin.
    Kurose H; Ui M
    J Cyclic Nucleotide Protein Phosphor Res; 1983; 9(4-5):305-18. PubMed ID: 6687224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine A1 receptor-dependent and -independent effects of the allosteric enhancer PD 81,723.
    Musser B; Mudumbi RV; Liu J; Olson RD; Vestal RE
    J Pharmacol Exp Ther; 1999 Feb; 288(2):446-54. PubMed ID: 9918544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the mechanism of receptor-mediated inhibition of adenylate cyclase.
    Klee WA; Koski G; Tocque B; Simonds WF
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():153-9. PubMed ID: 6145318
    [No Abstract]   [Full Text] [Related]  

  • 9. [Specificity and mechanism of action of bacterial toxins].
    Battistini A; Tomasi M; D'Agnolo G
    Ann Ist Super Sanita; 1982; 18(3):453-7. PubMed ID: 6821295
    [No Abstract]   [Full Text] [Related]  

  • 10. [Pertussis toxin stimulates brain adenyl cyclase and induces ADP ribosylation of a 40,000 dalton membrane protein].
    Berthillier G; Megret F; Alouf JE; Monneron A
    C R Seances Acad Sci III; 1983; 297(12):575-8. PubMed ID: 6424879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal transduction by receptor-responsive guanyl nucleotide-binding proteins: modulation by bacterial toxin-catalyzed ADP-ribosylation.
    Moss J
    Clin Res; 1987 Sep; 35(5):451-8. PubMed ID: 2444382
    [No Abstract]   [Full Text] [Related]  

  • 12. IL-8 induces the locomotion of human IL-2-activated natural killer cells. Involvement of a guanine nucleotide binding (Go) protein.
    Sebok K; Woodside D; al-Aoukaty A; Ho AD; Gluck S; Maghazachi AA
    J Immunol; 1993 Feb; 150(4):1524-34. PubMed ID: 8381837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PTH-dependent adenylyl cyclase activation in SaOS-2 cells: passage dependent effects on G protein interactions.
    Gao H; Bodine PV; Murrills R; Bex FJ; Bilezikian JP; Morris SA
    J Cell Physiol; 2002 Oct; 193(1):10-8. PubMed ID: 12209875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective blockage by islet-activating protein, pertussis toxin, of negative signal transduction from receptors to adenylate cyclase.
    Ui M; Katada T; Murayama T; Kurose H
    Adv Exp Med Biol; 1984; 175():1-16. PubMed ID: 6388254
    [No Abstract]   [Full Text] [Related]  

  • 15. Bordetella pertussis: multiple attacks on host cell cyclic AMP regulation.
    Wolff J; Cook GH; Goldhammer AR; Londos C; Hewlett EL
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():161-72. PubMed ID: 6328913
    [No Abstract]   [Full Text] [Related]  

  • 16. In vitro effect of chlorpyrifos oxon on muscarinic receptors and adenylate cyclase.
    Huff RA; Abou-Donia MB
    Neurotoxicology; 1995; 16(2):281-90. PubMed ID: 7566687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADP-ribosylation of membrane components by pertussis and cholera toxin.
    Ribeiro-Neto FA; Mattera R; Hildebrandt JD; Codina J; Field JB; Birnbaumer L; Sekura RD
    Methods Enzymol; 1985; 109():566-72. PubMed ID: 2859516
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanisms of guanine nucleotide-mediated regulation of adenylate cyclase activity.
    Smigel M; Katada T; Northup JK; Bokoch GM; Ui M; Gilman AG
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():1-18. PubMed ID: 6328910
    [No Abstract]   [Full Text] [Related]  

  • 19. ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins.
    Moss J; Vaughan M
    Adv Enzymol Relat Areas Mol Biol; 1988; 61():303-79. PubMed ID: 3128060
    [No Abstract]   [Full Text] [Related]  

  • 20. [Mechanism of action of cholera toxin (author's transl)].
    Pacuszka T; Bradley RM
    Postepy Biochem; 1980; 26(4):585-611. PubMed ID: 6113582
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.